Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chem Soc Rev ; 50(17): 9845-9998, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34308940

RESUMO

In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.

2.
Chem Rec ; 21(2): 257-283, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215848

RESUMO

Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower-like structures along with their key applications in various fields. We discuss the various types of flower-like structures composed of inorganic, organic-inorganic hybrid, inorganic-protein, inorganic-enzyme and organic compositions. We also discuss recent development in flower-like structures prepared by self-assembly approaches. Finally, we conclude our review with the future prospects of flower-like micro-structures in key fields, being biomedicine, sensing and catalysis.


Assuntos
Flores , Mimetismo Molecular , Estrutura Molecular , Compostos Inorgânicos/química , Compostos Orgânicos/química
3.
Chem Rec ; 20(8): 793-819, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32181970

RESUMO

The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self-assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.

4.
Chemistry ; 23(16): 3950-3956, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28217844

RESUMO

The induction of chirality in supramolecular structures through hierarchical self-assembly of achiral compounds and the control of their handedness are closely related to the evolution of life and the chiral amplification found in nature. Herein, it is shown that the combination of achiral tetraphenylethylene, an aggregation-induced emission (AIE)-active luminophore bearing four alkyl chains with an odd or even number of carbon atoms via an amide linkage in the molecular structure allows the induction and control of supramolecular chirality in well-defined helical superstructures by controlling the solvent composition and polarity. In particular, right-handed supramolecular structures were produced for an even number of carbon atoms in the alkyl chains, whereas an odd number led to the assembly of left-handed superstructures. The twisted superstructure was visualised by SEM, and circular dichroism was used to observe chirality in the assembly. These controlled assemblies of AIE-active molecules are of potential practical value, such as templates for helical crystallisation, catalysis and formation of chiral mechanochromic luminescent superstructures.

5.
Molecules ; 22(9)2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850084

RESUMO

A new pyrene-phosphonate colorimetric receptor 1 has been designed and synthesized in a one-step process via amide bond formation between pyrene butyric acid chloride and phosphonate-appended aniline. The pyrene-phosphonate receptor 1 showed aggregation-induced enhanced emission (AIEE) properties in water/acetonitrile (ACN) solutions. Dynamic light scattering (DLS) characterization revealed that the aggregates of receptor 1 at 80% water fraction have an average size of ≈142 nm. Field emission scanning electron microscopy (FE-SEM) analysis confirmed the formation of spherical aggregates upon solvent evaporation. The sensing properties of receptor 1 were investigated by UV-vis, fluorescence emission spectroscopy, and other optical methods. Among the tested metal ions, receptor 1 is capable of recognizing the Fe3+ ion selectively. The changes in spectral measurements were explained on the basis of complex formation. The composition of receptor 1 and Fe3+ ions was determined by using Job's plot and found to be 1:1. The receptor 1-Fe3+ complex showed a reversible UV-vis response in the presence of EDTA.


Assuntos
Ferro/química , Organofosfonatos/química , Pirenos/química , Técnicas Biossensoriais , Difusão Dinâmica da Luz , Estrutura Molecular , Espectrometria de Fluorescência
6.
Langmuir ; 32(2): 619-25, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26694744

RESUMO

Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.


Assuntos
Dermatoglifia , Ácidos Graxos/química , Lipídeos/química , Sebo/química , Materiais Biomiméticos/química , Humanos , Microscopia Eletrônica de Varredura , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Reologia , Sais/química , Propriedades de Superfície , Tato , Água/química , Molhabilidade
7.
Langmuir ; 32(41): 10744-10751, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27718587

RESUMO

The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 µg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.

8.
Chemistry ; 20(34): 10775-81, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24864034

RESUMO

Construction of thermodynamically stable nanostructures on the nano- to millimeter scales through noncovalent bonding plays an important role in material science. The self-assembly of tetra-alkylamino core-substituted naphthalene diimides (cNDIs) with variable alkyl chains (C8H17, C12H25, and C16H33) added on to the core leads to the formation of a variety of controlled morphologies and well-defined nanostructures. Such structures include nanorods, vesicular, belts, twisted ribbons, and donutlike morphologies (formed in CHCl3/MeOH and CHCl3/hexane mixtures) generated through solvophobic control. UV/Vis absorption and fluorescence spectroscopy demonstrate molecular aggregation in solution. Furthermore, SEM was employed to visualize the supramolecular self-assembled nanostructures. The growth of these structures is mainly due to packing of hydrophobic alkyl chains and π-π stacking of the cNDI core. The present study paves the way to rational and controlled designs of nanostructures made of optically active dyes (naphthalene diimide); this may open a new avenue towards tuning nanodimensional morphology.

9.
Chem Asian J ; 19(3): e202301046, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180124

RESUMO

The development of new π-conjugated molecular structures with controlled self-assembly and distinct photophysical properties is crucial for advancing applications in optoelectronics and biomaterials. This study introduces the synthesis and detailed self-assembly analysis of tetraphenylethylene (TPE) functionalized naphthalene diimide (NDI), a novel donor-acceptor molecular structure referred to as TPE-NDI. The investigation specifically focuses on elucidating the self-assembly behavior of TPE-NDI in mixed solvents of varying polarities, namely chloroform: methylcyclohexane (CHCl3 : MCH) and chloroform: methanol (CHCl3 : MeOH). Employing a several analytical methodologies, including UV-Vis absorption and fluorescence emission spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS), these self-assembled systems have been comprehensively examined. The results reveal that TPE-NDI manifests as distinct particles in CHCl3 : MCH (fMCH =90 %), while transitioning to flower-like assemblies in CHCl3 : MeOH (fMeOH =90 %). This finding underscores the critical role of solvent polarity in dictating the morphological characteristics of TPE-NDI self-assembled aggregates. Furthermore, the study proposes a molecular packing mechanism, based on SEM data, offering significant insights into the design and development of functional supramolecular systems. Such advancements in understanding the molecular self-assembly new π-conjugated molecular structures are anticipated to pave the way for novel applications in material science and nanotechnology.

10.
ACS Appl Bio Mater ; 6(3): 1054-1070, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880728

RESUMO

Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward Pseudomonas aeruginosa and Staphylococcus aureus bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (H2SO4), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-H2SO4. The MN-HCl surfaces were characterized by an average surface microroughness (Sa) of 0.8 ± 0.1 µm covered by blade-like nanosheets of 10 ± 2.1 nm thickness, whereas the MN-H2SO4 surfaces exhibited a greater Sa value of 5.8 ± 0.6 µm, with a network of nanosheets of 20 ± 2.6 nm thickness. Both micronanostructured surfaces promoted enhanced MG-63 attachment and differentiation; however, cell proliferation was only significantly increased on MN-HCl surfaces. In addition, the MN-HCl surface exhibited increased levels of bactericidal activity, with only 0.6% of the P. aeruginosa cells and approximately 5% S. aureus cells remaining viable after 24 h when compared to control surfaces. Thus, we propose the modulation of surface roughness and architecture on the micro- and nanoscale to achieve efficient manipulation of osteogenic cell response combined with mechanical antibacterial activity. The outcomes of this study provide significant insight into the further development of advanced multifunctional orthopedic implant surfaces.


Assuntos
Staphylococcus aureus , Titânio , Titânio/farmacologia , Propriedades de Superfície , Osteogênese , Antibacterianos/farmacologia
11.
Mol Pharm ; 9(1): 81-90, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22149016

RESUMO

It has become increasingly recognized that polymer particle size can have a profound effect on the interactions of particle-based vaccines with antigen presenting cells (APCs) thereby influencing and modulating ensuing immune responses. With the aim of developing chitosan particle-based immunocontraceptive vaccines, we have compared the use of chitosan-based nanoparticles and chitosan-based microparticles as vaccine delivery vehicles for vaccine candidates based on luteinizing hormone-releasing hormone (LHRH). Particles, functionalized with chloroacetyl groups, which allows the covalent attachment of thiol-containing antigens, were able to adsorb ~60-70% of their weight of peptide-based antigen and 10-20% of their weight of protein-based antigen. Quantitation by amino acid analysis of antigen associated with particles demonstrated a correlation between associated antigen and the degree of chloracetylation of particles. Visualization of fluorescently labeled antigen-loaded particles by confocal microscopy indicated that the majority of antigen was localized at the particle surface with a smaller amount located in the interior. We also found that uptake of both fluoresceinated nanoparticles and microparticles by dendritic cells occurred in a manner dependent on particle concentration. Nanoparticles trafficked from the injection site to draining lymph nodes faster than microparticles; high numbers of nanoparticle-bearing cells appeared in draining lymph nodes on day 3 and microparticles on day 4. This difference in trafficking rate did not, however, appear to have any significant impact on the ensuing immune response because inoculation with both peptide-conjugated and protein-conjugated particles induced high levels of LHRH-specific antibodies. In the case of protein-conjugated particles, the levels of antibodies elicited were similar to those elicited following inoculation with antigen emulsified with complete Freund's adjuvant. The approach to vaccine design that we have described here could represent another useful method for inducing immune responses against microbial, viral and tumorigenic protein antigens.


Assuntos
Quitosana/química , Portadores de Fármacos/administração & dosagem , Hormônio Liberador de Gonadotropina/administração & dosagem , Nanopartículas/química , Fragmentos de Peptídeos/administração & dosagem , Vacinas Anticoncepcionais/administração & dosagem , Acetatos/química , Acetilação/efeitos dos fármacos , Anidridos/química , Animais , Células Cultivadas , Quitosana/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Composição de Medicamentos , Feminino , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/farmacocinética , Hormônio Liberador de Gonadotropina/uso terapêutico , Halogenação/efeitos dos fármacos , Imunidade Ativa , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Propriedades de Superfície , Distribuição Tecidual , Vacinas Anticoncepcionais/metabolismo , Vacinas Anticoncepcionais/farmacocinética , Vacinas Anticoncepcionais/uso terapêutico
12.
J Colloid Interface Sci ; 560: 572-580, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31679779

RESUMO

HYPOTHESIS: Titanium and titanium alloys are often the most popular choice of material for the manufacture of medical implants; however, they remain susceptible to the risk of device-related infection caused by the presence of pathogenic bacteria. Hydrothermal etching of titanium surfaces, to produce random nanosheet topologies, has shown remarkable ability to inactivate pathogenic bacteria via a physical mechanism. We expect that systematic tuning of the nanosheet morphology by controlling fabrication parameters, such as etching time, will allow for optimisation of the surface pattern for superior antibacterial efficacy. EXPERIMENTS: Using time-dependent hydrothermal processing of bulk titanium, we fabricated bactericidal nanosheets with variable nanoedge morphologies according to a function of etching time. A systematic study was performed to compare the bactericidal efficiency of nanostructured titanium surfaces produced at 0.5, 1, 2, 3, 4, 5, 6, 24 and 60 h of hydrothermal etching. FINDINGS: Titanium surfaces hydrothermally treated for a period of 6 h were found to achieve maximal antibacterial efficiency of 99 ±â€¯3% against Gram-negative Pseudomonas aeruginosa and 90 ±â€¯9% against Gram-positive Staphylococcus aureus bacteria, two common human pathogens. These surfaces exhibited nanosheets with sharp edges of approximately 10 nm. The nanotopographies presented in this work exhibit the most efficient mechano-bactericidal activity against both Gram-negative and Gram-positive bacteria of any nanostructured titanium topography reported thus far.


Assuntos
Antibacterianos/farmacologia , Temperatura Alta , Nanoestruturas/administração & dosagem , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Ligas , Antibacterianos/química , Aderência Bacteriana , Humanos , Nanoestruturas/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Titânio/química
13.
ACS Omega ; 4(7): 11408-11413, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460245

RESUMO

Supramolecular self-assembly of an octaphosphonate tetraphenyl porphyrin with three different nucleobases (adenine, cytosine, and thymine) was studied. Porphyrin 1 with 8 and 10 equiv of cytosine produces light-harvesting ring-like structures, that is, architectures similar to those observed in natural light-harvesting antenna. However, porphyrin assembled with adenine or thymine resulted in prisms and microrods, respectively. UV-vis absorption, fluorescence, and dynamic light scattering were used to determine the mode of aggregation in solution. Scanning electron microscopy and X-ray diffraction spectroscopy used to visualize the self-assembled nanostructures and their behavior in the solid state, respectively. Thus, we believe that this study may demonstrate a deeper understanding on how one needs to manipulate donor/acceptor subunits in supramolecular assemblies to construct artificial antenna architectures.

14.
Materials (Basel) ; 12(10)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091694

RESUMO

Biomaterials that have been newly implanted inside the body are the substratum targets for a "race for the surface", in which bacterial cells compete against eukaryotic cells for the opportunity to colonize the surface. A victory by the former often results in biomaterial-associated infections, which can be a serious threat to patient health and can undermine the function and performance of the implant. Moreover, bacteria can often have a 'head start' if implant contamination has taken place either prior to or during the surgery. Current prevention and treatment strategies often rely on systemic antibiotic therapies, which are becoming increasingly ineffective due to a growing prevalence of antibiotic-resistant bacteria. Nanostructured surfaces that kill bacteria by physically rupturing bacterial cells upon contact have recently emerged as a promising solution for the mitigation of bacterial colonization of implants. Furthermore, these nanoscale features have been shown to enhance the adhesion and proliferation of eukaryotic cells, which is a key to, for example, the successful osseointegration of load-bearing titanium implants. The bactericidal activity and biocompatibility of such nanostructured surfaces are often, however, examined separately, and it is not clear to what extent bacterial cell-surface interactions would affect the subsequent outcomes of host-cell attachment and osseointegration processes. In this study, we investigated the ability of bactericidal nanostructured titanium surfaces to support the attachment and growth of osteoblast-like MG-63 human osteosarcoma cells, despite them having been pre-infected with pathogenic bacteria. MG-63 is a commonly used osteoblastic model to study bone cell viability, adhesion, and proliferation on the surfaces of load-bearing biomaterials, such as titanium. The nanostructured titanium surfaces used here were observed to kill the pathogenic bacteria, whilst simultaneously enhancing the growth of MG-63 cells in vitro when compared to that occurring on sterile, flat titanium surfaces. These results provide further evidence in support of nanostructured bactericidal surfaces being used as a strategy to help eukaryotic cells win the "race for the surface" against bacterial cells on implant materials.

15.
ChemistryOpen ; 7(12): 934-952, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30524920

RESUMO

This Review article provides a comprehensive analysis of recent examples reported in the field of quinoxaline-based chromogenic and fluorogenic chemosensors for inorganic anions such as fluoride, cyanide, acetate, and phosphate, as well as their utility in biomolecular science. It commences with a discussion of the various structural motifs such as quinoxaline-based oligopyrroles, polymers, sulfonamides, cationic receptors, and miscellaneous receptors bearing mixed recognition sites in the same receptor. Advances are discussed in depth, where the focus of this review is to tackle mainly solution state anion sensing utilizing quinoxaline-based receptors using different spectroscopic techniques with reference to anion selectivity by colorimetric and fluorescence response. The various examples discussed in this Review illustrate how the integration of anion binding elements with the quinoxaline chromophore could result in anion responsive chemosensors. Over the years, it has been observed that structural modification of the quinoxaline moiety with different sets of signaling unit and recognition sites has resulted in a few anion specific chemosensors.

16.
Chem Asian J ; 13(21): 3268-3273, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30160826

RESUMO

The ordering of organic molecules in a supramolecular self-assembly determines their physical, chemical, and photonic properties. Here, we report the aggregation of two achiral naphthalene diimides (NDIs), in which phenyl moieties are linked to the NDI core via a urea subunit, leading to chiral supramolecular assemblies in THF/methylcyclohexane. Circular dichroism spectroscopic analysis of twisted ribbons deposited from solutions indicated a mixture of left- and right-handed nanostructures for one NDI, whereas only left-handed structures were observed for the other one. Furthermore, this study also shows the effect of large atoms such as iodine on the self-assembly process, which governs and controls the helicity of the produced microstructures. The supramolecular assemblies were characterized by UV/Vis, fluorescence emission, CD, SEM, and XRD techniques.

17.
Sci Rep ; 8(1): 8413, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849036

RESUMO

Insects represent the majority of known animal species and exploit a variety of fascinating nanotechnological concepts. We investigated the wings of the damselfly Calopteryx haemorrhoidalis, whose males have dark pigmented wings and females have slightly pigmented wings. We used scanning electron microscopy (SEM) and nanoscale synchrotron X-ray fluorescence (XRF) microscopy analysis for characterizing the nanostructure and the elemental distribution of the wings, respectively. The spatially resolved distribution of the organic constituents was examined by synchrotron Fourier transform infrared (s-FTIR) microspectroscopy and subsequently analyzed using hierarchical cluster analysis. The chemical distribution across the wing was rather uniform with no evidence of melanin in female wings, but with a high content of melanin in male wings. Our data revealed a fiber-like structure of the hairs and confirmed the presence of voids close to its base connecting the hairs to the damselfly wings. Within these voids, all detected elements were found to be locally depleted. Structure and elemental contents varied between wing membranes, hairs and veins. The elemental distribution across the membrane was rather uniform, with higher Ca, Cu and Zn levels in the male damselfly wing membranes.


Assuntos
Odonatos/anatomia & histologia , Espectrometria por Raios X/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Asas de Animais/química , Animais , Feminino , Masculino
18.
PLoS One ; 12(12): e0188345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253012

RESUMO

Surface modification of polymers and paints is a popular and effective way to enhance the properties of these materials. This can be achieved by introducing a thin coating that preserves the bulk properties of the material, while protecting it from environmental exposure. Suitable materials for such coating technologies are inorganic oxides, such as alumina, titania and silica; however, the fate of these materials during long-term environmental exposure is an open question. In this study, polymer coatings that had been enhanced with the addition of silica nanoparticles (SiO2NPs) and subsequently subjected to environmental exposure, were characterized both before and after the exposure to determine any structural changes resulting from the exposure. High-resolution synchrotron macro ATR-FTIR microspectroscopy and surface topographic techniques, including optical profilometry and atomic force microscopy (AFM), were used to determine the long-term effect of the environment on these dual protection layers after 3 years of exposure to tropical and sub-tropical climates in Singapore and Queensland (Australia). Principal component analysis (PCA) based on the synchrotron macro ATR-FTIR spectral data revealed that, for the 9% (w/w) SiO2NP/polymer coating, a clear discrimination was observed between the control group (no environmental exposure) and those samples subjected to three years of environmental exposure in both Singapore and Queensland. The PCA loading plots indicated that, over the three year exposure period, a major change occurred in the triazine ring vibration in the melamine resins. This can be attributed to the triazine ring being very sensitive to hydrolysis under the high humidity conditions in tropical/sub-tropical environments. This work provides the first direct molecular evidence, acquired using a high-resolution mapping technique, of the climate-induced chemical evolution of a polyester coating. The observed changes in the surface topography of the coating are consistent with the changes in chemical composition.


Assuntos
Materiais Revestidos Biocompatíveis/química , Umidade , Microespectrofotometria , Nanopartículas/química , Poliésteres/química , Dióxido de Silício/química , Aço/química , Síncrotrons , Meio Ambiente , Espectroscopia Fotoeletrônica , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Raios Ultravioleta , Água/química , Molhabilidade
19.
Materials (Basel) ; 11(1)2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29301234

RESUMO

Cellular attachment plays a vital role in the differentiation of pheochromocytoma (PC12) cells. PC12 cells are noradrenergic clonal cells isolated from the adrenal medulla of Rattus norvegicus and studied extensively as they have the ability to differentiate into sympathetic neuron-like cells. The effect of several experimental parameters including (i) the concentration of nerve growth factor (NGF); (ii) substratum coatings, such as poly-L-lysine (PLL), fibronectin (Fn), and laminin (Lam); and (iii) double coatings composed of PLL/Lam and PLL/Fn on the differentiation process of PC12 cells were studied. Cell morphology was visualised using brightfield phase contrast microscopy, cellular metabolism and proliferation were quantified using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, and the neurite outgrowth and axonal generation of the PC12 cells were evaluated using wide field fluorescence microscopy. It was found that double coatings of PLL/Lam and PLL/Fn supported robust adhesion and a two-fold enhanced neurite outgrowth of PC12 cells when treated with 100 ng/mL of NGF while exhibiting stable metabolic activity, leading to the accelerated generation of axons.

20.
ACS Omega ; 2(11): 8099-8107, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023573

RESUMO

Self-organized bacteria have been the subject of interest for a number of applications, including the construction of microbial fuel cells. In this paper, we describe the formation of a self-organized, three-dimensional network that is constructed using Gluconobacter oxydans B-1280 cells in a hydrogel consisting of poly(vinyl alcohol) (PVA) with N-vinyl pyrrolidone (VP) as a cross-linker, in which the bacterial cells are organized in a particular side-by-side alignment. We demonstrated that nonmotile G. oxydans cells are able to reorganize themselves, transforming and utilizing PVA-VP polymeric networks through the molecular interactions of bacterial extracellular polysaccharide (EPS) components such as acetan, cellulose, dextran, and levan. Molecular dynamics simulations of the G. oxydans EPS components interacting with the hydrogel polymeric network showed that the solvent-exposed loops of PVA-VP extended and engaged in bacterial self-encapsulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA