Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731408

RESUMO

Functionalization of C-H bonds has emerged as a powerful strategy for converting inert, nonfunctional C-H bonds into their reactive counterparts. A wide range of C-H bond functionalization reactions has become possible by the catalysis of metals, typically from the second row of transition metals. First-row transition metals can also catalyze C-H functionalization, and they have the merits of greater earth-abundance, lower cost and better environmental friendliness in comparison to their second-row counterparts. C-H bond alkylation is a particularly important C-H functionalization reaction due to its chemical significance and its applications in natural product synthesis. This review covers Ni-catalyzed C-H bond alkylation reactions using alkyl halides and olefins as alkyl sources.

2.
Chemistry ; 29(48): e202301734, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37280155

RESUMO

The quinolone-quinoline tautomerization is harnessed to effect the regioselective C8-borylation of biologically important 4-quinolones by using [Ir(OMe)(cod)]2 as the catalyst precursor, the silica-supported monodentate phosphine Si-SMAP as the ligand, and B2 pin2 as the boron source. Initially, O-borylation of the quinoline tautomer takes place. Critically, the newly formed 4-(pinBO)-quinolines then undergo N-directed selective Ir-catalyzed borylation at C8. Hydrolysis of the OBpin moiety on workup returns the system to the quinolone tautomer. The C8-borylated quinolines were converted to their corresponding potassium trifluoroborate (BF3 K) salts and to their C8-chlorinated quinolone derivatives. The two-step C-H borylation-chlorination reaction sequence resulted in various C8-Cl quinolones in good yields. Conversion to C8-OH-, C8-NH2 -, and C8-Ar-substituted quinolones was also feasible by using this methodology.

3.
J Org Chem ; 87(15): 9977-9987, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35839386

RESUMO

The Ir-catalyzed C-H borylation of fluoroquinolines has been realized. The quinoline boronic ester formed undergoes a range of important transformations of relevance to medicinal chemistry. Judicious choice of the substituent at C4 on the quinoline facilitated the unmasking of a fluoroquinolone─the core structure of many antibiotics.


Assuntos
Fluoroquinolonas , Irídio , Compostos de Boro/química , Catálise , Irídio/química , Estrutura Molecular
4.
J Org Chem ; 86(4): 3138-3151, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33512169

RESUMO

Herein, we report a one-pot site-selective dual metal catalyzed C-H diarylation reaction for the synthesis of multiarylated thiophene and furan derivatives in yields up to 92%. The regioselectivity of the developed methodology was achieved with the sequential use of two metal catalysts within a single vessel, starting with a Ru(II)-catalyzed C3 arylation assisted by an azine directing group, followed by a Pd(0)-catalyzed C-H functionalization on the C5-position of the five-membered heterocycle. Furthermore, the kinetic studies support that the position of the nitrogen atom within the azine moiety exhibits an evident effect on the efficiency of the ruthenium-catalyzed arylation step.

5.
Beilstein J Org Chem ; 15: 1194-1202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293666

RESUMO

(R,R)-Dimethyl tartrate acetonide 7 in THF/HMPA undergoes deprotonation with LDA and reaction at -78 °C during 12-72 h with a range of alkyl halides, including non-activated substrates, to give single diastereomers (at the acetonide) of monoalkylated tartrates 17, 24, 33a-f, 38a,b, 41 of R,R-configuration, i.e., a stereoretentive process (13-78% yields). Separable trans-dialkylated tartrates 34a-f can be co-produced in small amounts (9-14%) under these conditions, and likely arise from the achiral dienolate 36 of tartrate 7. Enolate oxidation and acetonide removal from γ-silyloxyalkyl iodide-derived alkylated tartrates 17 and 24 give ketones 21 and 26 and then Bamford-Stevens-derived diazoesters 23 and 27, respectively. Only triethylsilyl-protected diazoester 27 proved viable to deliver a diazoketone 28. The latter underwent stereoselective carbonyl ylide formation-cycloaddition with methyl glyoxylate and acid-catalysed rearrangement of the resulting cycloadduct 29, to give the 3,4,5-tricarboxylate-2,8-dioxabicyclo[3.2.1]octane core 31 of squalestatins/zaragozic acids. Furthermore, monoalkylated tartrates 33a,d,f, and 38a on reaction with NaOMe in MeOH at reflux favour (≈75:25) the cis-diester epimers epi- 33a,d,f and epi- 38a (54-67% isolated yields), possessing the R,S-configuration found in several monoalkylated tartaric acid motif-containing natural products.

6.
Chemistry ; 23(53): 13164-13180, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28718975

RESUMO

We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes2 (mes=2,4,6-Me3 C6 H2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives.

7.
Chemistry ; 20(31): 9739-43, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24957002

RESUMO

Site-selective ruthenium(II)-catalyzed direct arylation of amides was achieved through CH cleavages with modular auxiliaries, derived from easily accessible 1,2,3-triazoles. The triazolyldimethylmethyl (TAM) bidentate directing group was prepared in a highly modular fashion through copper(I)-catalyzed 1,3-dipolar cycloaddition and allowed for ruthenium-catalyzed CH arylations on arenes and heteroarenes, as well as alkenes, by using easy-to-handle aryl bromides as the arylating reagents. The triazole-assisted CH activation strategy was found to be widely applicable, to occur under mild reaction conditions, and the catalytic system was tolerant of important electrophilic functionalities. Notably, the flexible triazole-based auxiliary proved to be a more potent directing group for the optimized ruthenium(II)-catalyzed direct arylations, compared with pyridyl-substituted amides or substrates derived from 8-aminoquinoline.

8.
Angew Chem Int Ed Engl ; 53(15): 3868-71, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24596034

RESUMO

Modular 1,2,3-triazoles enabled iron-catalyzed CH arylations with broad scope. The novel triazole-based bidentate auxiliary is easily accessible in a highly modular fashion and allowed for user-friendly iron-catalyzed C(sp(2) )H functionalizations of arenes and alkenes with excellent chemo- and diastereoselectivities. The versatile iron catalyst also proved applicable for challenging C(sp(3) )H functionalizations, and proceeds by an organometallic mode of action. The triazole-assisted CH activation strategy occurred under remarkably mild reaction conditions, and the auxiliary was easily removed in a traceless fashion. Intriguingly, the triazole group proved superior to previously used auxiliaries.


Assuntos
Ferro/química , Triazóis/química , Catálise
9.
Chem Sci ; 13(18): 5205-5219, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655553

RESUMO

Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.

10.
Chem Commun (Camb) ; 54(42): 5354-5356, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29741545

RESUMO

The presence of a bromide substituent, instead of a hydrogen or methyl group, on a carbon-carbon double bond, protects the alkene from addition reactions when exposed to trifluoroacetic acid. This concept is used to circumvent concomitant loss of unsaturation in a late-stage acid-catalysed 6,8- to 2,8-dioxabicyclo[3.2.1]octane rearrangement towards (-)-6,7-dideoxysqualestatin H5. The inertness of the alkenyl bromide functionality is demonstrated through several synthetic transformations in the assembly of the rearrangement substrate. Completion of the natural product synthesis is facilitated by post-rearrangement removal of the bromide substituent through stereoselective C-C cross-coupling in the presence of ester and hydroxyl functionalities.

11.
Org Lett ; 19(19): 5458-5461, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28906123

RESUMO

We report here a manganese-catalyzed C-H methylation reaction of considerable substrate scope, using MeMgBr, a catalytic amount of MnCl2·2LiCl, and an organic dihalide oxidant. The reaction features ambient temperature, low catalyst loading, typically 1%, high catalytic turnover reaching 5.9 × 103, and no need for an extraneous ligand and illustrates a unique catalytic use of simple manganese salts for C-H activation, which so far has relied on catalysis by manganese carbonyls.

12.
Org Lett ; 19(13): 3540-3543, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28631488

RESUMO

An asymmetric synthesis of (-)-6,7-dideoxysqualestatin H5 is reported. Key features of the synthesis include the following: (1) highly diastereoselective n-alkylation of a tartrate acetonide enolate and subsequent oxidation-hydrolysis to provide an asymmetric entry to a ß-hydroxy-α-ketoester motif; (2) facilitation of Rh(II)-catalyzed cyclic carbonyl ylide formation-cycloaddition by co-generation of keto and diazo functionality through ozonolysis of an unsaturated hydrazone; and (3) stereoretentive Ni-catalyzed Csp3-Csp2 cross-electrophile coupling between tricarboxylate core and unsaturated side chain to complete the natural product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA