Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant Dis ; 108(1): 125-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37498631

RESUMO

Grapevine virus A (GVA) is an economically important virus and a member of the genus Vitivirus (family Betaflexiviridae) that causes a range of symptoms with qualitative and quantitative effects on grape production. Wild and domesticated species of Vitis, including hybrids used as rootstocks, are considered important natural hosts of GVA. Mechanical transmission to some herbaceous plant species, graft transmission, and vector transmission from grape to grape by various mealybugs and soft scale insects have been reported. Under laboratory and greenhouse conditions, this study demonstrates the transmission of GVA from grapes to alternative hosts by the vine mealybug (Planococcus ficus). Results of ELISA, end-point one-step RT-PCR, and real-time RT-PCR, and in some cases electron microscopy and genome sequencing, confirmed successful transmission to three new plant species commonly found in Croatian vineyards: velvetleaf (Abutilon theophrasti), redroot pigweed (Amaranthus retroflexus), and field poppy (Papaver rhoeas), along with Chenopodium murale and the previously known host Nicotiana benthamiana, with variable infection rates. Depending on the host species, symptoms in the form of leaf reddening, yellow spots, reduced growth of lateral shoots, systemic vein clearing, foliar deformation and rugosity, and dwarfism were observed in GVA-infected plants, whereas no symptoms were observed in infected plants of A. theophrasti. Reverse transmission from these new hosts to grapevines by Pl. ficus was not successful. These results confirm four new GVA host species and open new research venues.


Assuntos
Flexiviridae , Hemípteros , Vírus de Plantas , Animais , Flexiviridae/genética , Vírus de Plantas/genética , Nicotiana
2.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568788

RESUMO

During summer 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. Highthroughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via RT-PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using RACE methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long and they shared 99.9-100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kDa) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3%/84.4% nt/aa polyproteins identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below species threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).

3.
Plant Dis ; 107(4): 1022-1026, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36167515

RESUMO

Malabar spinach plants (Basella alba, Basellaceae) with leaves exhibiting symptoms of mosaic, rugosity, and malformation were found in a community garden on Oahu, HI in 2018. Preliminary studies using enzyme-linked immunosorbent assay and reverse-transcription (RT)-PCR identified Basella rugose mosaic virus (BaRMV) in symptomatic plants. However, nucleotide sequence analysis of RT-PCR amplicons indicated that additional potyviruses were also present in the symptomatic Malabar spinach. High-throughput sequencing (HTS) analysis was conducted on ribosomal RNA-depleted composite RNA samples of potyvirus-positive plants from three locations. Assembled contigs shared sequences similar to BaRMV, chilli veinal mottle virus (ChiVMV), Alternanthera mosaic virus (AltMV), Basella alba endornavirus (BaEV), broad bean wilt virus 2 (BBWV2), and Iresine viroid 1. Virus- and viroid-specific primers were designed based on HTS sequencing results and used in RT-PCR and Sanger sequencing to confirm the presence of these viruses and the viroid. We tested 63 additional samples from six community gardens for a survey of viruses in Malabar spinach and found that 21 of them were positive for BaRMV, 57 for ChiVMV, 21 for AltMV, 19 for BaEV, and 14 for BBWV2. This is the first characterization of the virome from B. alba.


Assuntos
Potyvirus , Viroides , Havaí , Potyvirus/genética , Primers do DNA , Ensaio de Imunoadsorção Enzimática
4.
Phytopathology ; 112(8): 1603-1609, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713600

RESUMO

Grapevine virus infectious clones are important tools for fundamental studies, but also because of their potential for translational applications for grapevine improvement. Although several grapevine virus infectious clones have been developed, there has been difficulty in directly infecting mature grapevine plants, and many of the viruses used still cause disease symptoms in grapevine plants, making them less likely candidates for biotechnological applications in grapes. Here, we developed an improved Agrobacterium tumefaciens infiltration method that can be used to deliver DNA plasmids and viral infectious clones directly into approximately 20- to 40-cm-high (above soil) greenhouse-grown grapevine plants. We also developed infectious clones for two isolates of grapevine geminivirus A (GGVA): Longyan (China; GenBank accession KX570611; GGVA-76) and Super Hamburg (Japan; GenBank accession KX570610; GGVA-93). Neither virus caused any obvious symptoms when inoculated to plants of grapevine varieties Colombard, Salt Creek, Cabernet Sauvignon, and Vaccarèse. However, the two GGVA isolates induced different symptom severity and viral titer in Nicotiana benthamiana plants. The two GGVA isolates used here were found to accumulate to different titers in different parts/branches of the infected grapevine plants. The GGVA infectious clones and the improved grapevine infiltration technique developed here provide new, valuable tools that can be applied to grapevine plants, possibly even for translational applications such as disease management and desired trait improvements.


Assuntos
Agrobacterium tumefaciens , Geminiviridae , Nicotiana , Agrobacterium tumefaciens/genética , Células Clonais , Geminiviridae/genética , Doenças das Plantas
5.
Plant Dis ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131502

RESUMO

Watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) is a species of considerable economic importance to cucurbit crops worldwide (Keinath et al. 2017). This virus has a wide host range that includes more than 170 plant species from 27 families (Dong et al. 2017; Lecoq et al. 2011). In 2018, leaves of coriander (Coriandrum sativum) plants in a student garden (C-SG) at UC Davis, and in a home garden in Davis, CA (C-Pet) (~1.1 miles apart) showed symptoms of light green mottling and crumpling. Symptomatic leaves from each location were weakly positive with the general potyvirus immunostrip test (Agdia, Elkhart, IN). In RT-PCR tests with total RNA extracts (RNeasy Plant Mini Kit Qiagen, Germantown, MD) of these leaves and the potyvirus degenerate primer pair CIFor/CIRev (Ha et al. 2008), the expected-size ~0.7 kb fragment was amplified. These fragments were gel-purified and sequenced, and a BLASTn search revealed highest identities of 91.6% (C-SG) and 97.9% (C-Pet) with the sequence of an isolate of WMV from watermelon in the U.S. (TX29, KU246036). Thus, these isolates are designated WMV-C-SG-18 and WMV-C-Pet-18. Mechanical inoculation experiments were next performed with sap prepared with symptomatic coriander leaf tissue in ice-cold 0.01 M phosphate buffer (pH 7.0) in a 1:4 wt/vol ratio. First, to obtain pure isolates, sap was inoculated onto celite-dusted leaves of Chenopodium quinoa plants (3-4 leaf stage). As expected for WMV, leaves inoculated with sap of each isolate developed chlorotic local lesions ~9 d post-inoculation (dpi) (Moreno et al. 2004). One lesion for each isolate was excised, ground in phosphate buffer, and the sap was mechanically inoculated onto leaves of Nicotiana benthamiana plants. By ~14 dpi, newly emerged leaves showed mild mottling and crumpling, and were weakly positive with the potyvirus immunostrip test. To confirm that these plants were only infected with WMV, total RNA was extracted from symptomatic leaves and used for high throughput sequencing (HTS) (Soltani et al. 2021) at the Foundation Plant Services at UC Davis. The HTS analyses revealed infection with only WMV, i.e., no other viral contigs were identified, and allowed for determination of the complete sequences (~10,000 nt) of WMV [US-CA-C-SG-18] and WMV [US-CA-C-Pet-18] with GenBank accession numbers: OM746964 and OM746965, respectively. Whole genome sequence comparisons revealed that the sequences are 99.0% identical, and 97.3% identical to the sequence of WMV TX29. Sap from symptomatic N. benthamiana leaves infected with each isolate was mechanical inoculated onto leaves of coriander plants (30-35 d old). Newly emerged leaves developed epinasty, crumpling and light green mottling by 14 dpi, and WMV infection was confirmed by RT-PCR with the WMV-specific primer pair WMV-UNI-1F and WMV-UNI-1R (Kim et al. 2019). Thus, Koch's postulates were fulfilled for this leaf mottling disease of coriander. Furthermore, the isolates from coriander induced stunting and distortion and mosaic in leaves of melon, pumpkin and squash plants by 7 dpi, whereas watermelon plants developed stunting and small leaves with mild mottling by 20 dpi. Similar results were obtained with sap prepared from infected coriander leaves. Thus, infected coriander plants are a potential inoculum source for cucurbits via several aphid vectors (Keinath et al. 2017). This is the first report of a mottle disease of coriander caused by WMV, and adds to the wide host range of the virus.

6.
Plant Dis ; 106(9): 2380-2391, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188414

RESUMO

The production of common bean (Phaseolus vulgaris L.) is adversely affected by virus-like diseases globally, but little is known about the occurrence, distribution, and diversity of common bean-infecting viruses in Zambia. Consequently, field surveys were conducted during the 2018 season in 128 fields across six provinces of Zambia and 640 common bean leaf tissue samples were collected with (n = 585) or without (n = 55) symptoms. The prevalence of symptomatic fields was 100%, but incidence of symptomatic plants ranged from 32 to 67.5%. Metagenomic analyses of nine composite samples and a single plant sample of interest revealed the occurrence of isolates of Bean common mosaic necrosis virus, Bean common mosaic virus, Cowpea aphid-borne mosaic virus, Peanut mottle virus, Southern bean mosaic virus (SBMV), Cucumber mosaic virus, Phaseolus vulgaris alphaendornavirus 1 (PvEV-1), PvEV-2, Ethiopian tobacco bushy top virus (ETBTV), and a novel strain of Cowpea polerovirus 1 (CPPV1-Pv) of 5,902 nt in length. While CPPV1-Pv was consistently detected in mixed infection with ETBTV and its satellite RNA molecule, based on results of mechanical transmission assays it does not appear to be involved in disease etiology, suggesting that its role may be limited to being a helper virus for the umbravirus. Screening of the survey samples by real-time PCR for the viruses detected by high-throughput sequencing revealed the prevalence of single (65.2% or 417/640) over mixed (1.9% or 12/640) infections in the samples. SBMV was the most frequently detected virus, occurring in ∼29.4% (188/640) of the samples and at a prevalence rate of 58.6% (75/128) across fields. The results showed that diverse virus species are present in Zambian common bean fields and the information will be useful for the management of common bean viral diseases.


Assuntos
Luteoviridae , Phaseolus , Vigna , Luteoviridae/genética , Doenças das Plantas , Vírus de Plantas , Zâmbia
7.
Arch Virol ; 166(2): 655-658, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33394170

RESUMO

RNA was extracted from 'Hugh Dickson' rose leaves displaying virus-like symptoms in Maryland, USA. Using high-throughput sequencing, we identified a new virus, tentatively named "rose virus R". This virus has a negative-sense, single-stranded RNA genome and exhibits genomic features of a rhabdovirus, including a genome organization of 3'-N-P-P3-M-G-P6-L-5' and a gene junction region consensus sequence 3'-AUUUAUUUUGACUCUA-5'. Rose virus R is phylogenetically related to cytorhabdoviruses, and the nucleotide and amino acid sequences of rose virus R and related cytorhabdoviruses have diverged considerably, suggesting that rose virus R should be classified as a member of a novel species in the genus Cytorhabdovirus.


Assuntos
Doenças das Plantas/virologia , Rosa/virologia , Vírus não Classificados/genética , Sequência de Aminoácidos , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos/genética , Filogenia , RNA Viral/genética , Rhabdoviridae/genética , Proteínas Virais/genética , Sequenciamento Completo do Genoma/métodos
8.
Arch Virol ; 166(12): 3399-3404, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34546432

RESUMO

Olea europaea geminivirus (OEGV) from olive accessions in Italy was characterized recently. OEGV was also detected during routine high-throughput sequencing screening of olive (cv. Leccino) material, and its complete bipartite genome segments were sequenced and shown to be 100% identical to those of the isolate from Italy. Using two pairs of newly designed primers targeting the AV1 and BV1 genes, OEGV was detected in randomly sampled olive trees from the U.S. Department of Agriculture National Clonal Germplasm Repository (USDA-NCGR) (21.4% or 6/28), commercial and residential settings in California (47.6% or 10/21), and an orchard in Texas (60% or 30/50). The cuttings for the USDA-NCGR-positive trees originated from the former Serbia and Montenegro, Spain, Italy, and Greece. Comparative analysis of the directly sequenced gene fragments from randomly selected samples showed that OEGV isolates from the different sources were 100% identical to each other. The results indicate that OEGV spread was likely facilitated by inadvertent movement of contaminated olive germplasm.


Assuntos
Geminiviridae , Olea , Geminiviridae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Texas/epidemiologia , Árvores
9.
Arch Virol ; 166(1): 321-323, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33175220

RESUMO

A new virus resembling members in the genus Carlavirus was identified in an Out of Yesteryear rose (Rosa sp.) by high-throughput sequencing. The virus was discovered during the screening of a rose virus collection belonging to Foundation Plant Services (UC-Davis). The full genome of the virus is 8825 nt long, excluding a poly(A) tail, and includes six predicted genes coding for replicase, triple gene block, coat protein (CP), and nucleic acid binding protein. The closest relative of the putative virus is rose virus A (RVA; genus Carlavirus), with 75% and 78% aa sequence identity in the replicase and CP, respectively. The relationship with RVA and other carlaviruses was supported by phylogenetic analyses using replicase and CP sequences. Based on genome organization, sequence identity, and phylogenetic analysis, the virus found in the Out of Yesteryear plant represents a new member of the genus Carlavirus and is provisionally named "rose virus B" (RVB). Further testing by reverse transcription PCR confirmed the presence of RVB in the original source and seven additional rose selections from the same collection.


Assuntos
Carlavirus/genética , Rosa/virologia , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA/métodos
10.
Arch Virol ; 166(10): 2869-2873, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292373

RESUMO

Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.


Assuntos
Frutas/parasitologia , Ácaros/virologia , Vírus de RNA de Cadeia Positiva/classificação , Árvores/parasitologia , Sequência de Aminoácidos , Animais , Frutas/virologia , Genoma Viral/genética , Metagenômica , Filogenia , Extratos Vegetais , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Vírus de RNA de Cadeia Positiva/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Árvores/virologia
11.
Plant Dis ; 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471550

RESUMO

Rose leaf rosette-associated virus (RLRaV) is a member of genus Closterovirus, family Closteroviridae. The virus was first discovered in China in 2015 from a mixed infected wild rose (Rosa multiflora Thunb.) showing small leaf rosettes on branches, dieback and severe decline symptoms (He et al. 2015). In 2013, a rose plant (cv. Roses Are Red) was introduced to Foundation Plant Services (FPS, UC-Davis) rose collection. The plant was originated from a private rose breeder collection located in California. In 2019, total nucleic acids (TNA) were isolated from leaf tissues of one asymptomatic plant (Roses Are Red plant) using MagMax Plant RNA Isolation Kit (Thermo Fisher Scientific, USA). Extracted TNA were screened by reverse-transcription quantitative PCR (RT-qPCR) for six common viruses infecting roses, including prunus necrotic ringspot virus (PNRSV), apple mosaic virus (ApMV), rose spring dwarf associated virus (RSDaV), rose yellow vein virus (RYVV), rose rosette virus (RRV), and blackberry chlorotic ringspot virus (BCRV); however, the results were negative. Therefore, the sample was subjected to high throughput sequencing (HTS). Briefly, TNA was depleted of rRNA and advanced for cDNA library preparation using TruSeq Stranded Total RNA kit (Illumina, USA). HTS was performed on Illumina NextSeq 500 platform. The raw reads were trimmed, de novo assembled, and subsequently were annotated using tBLASTx algorithm (Al Rwahnih et al. 2018). HTS generated 23.6 million 75 nucleotide (nt) single-end raw data reads. De novo assembly generated a contig (16,528 nts) resembling RLRaV reference sequence (KJ748003) with 74% identity at the nucleotide level. Putative coat protein and heat shock protein 70-like protein were identified based on >90% identity with RLRaV genes. To confirm HTS results, RT-PCR was performed using two primer sets, 1) Clo-F4916 (5'-GGTGTTCCAACGCTATCGTG-3') and Clo-R5215 (5'- TGTCCTCAAACCGCCTACAT-3') targeting nucleotide sequences of putative polyprotein 1a, and 2) Clo-F10006 (5'-GATTCCGCGGACGAATTAAT-3') and Clo-R10311 (5'-GGTAACCGAAAGGTAAAGTATTC-3') targeting nucleotide sequences of putative protein p25. The RLRaV amplicons with expected size of 300 nt were confirmed using bidirectional Sanger sequencing. The near-complete sequence of the new RLRaV isolate was deposited in GenBank under accession number MW056181. In addition, HTS analysis showed that RLRaV was in mixed infection with two mycoviruses (rose cryptic virus with 8,267 mapped reads and rose partitivirus with 7,283 mapped readss). To our knowledge, this is the first report of RLRaV affecting roses in California. Further research is needed to determine the prevalence of RLRaV in California as well as evaluation of RLRaV effect on rose performance.

12.
Plant Dis ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417499

RESUMO

Grapevine Pinot gris virus (GPGV) is a recently identified pathogen of grapevines in California. To advance our knowledge about the epidemiology of GPGV, we investigated if free-living Vitis spp. can represent a source of virus infection. In 2019 a field survey of GPGV infection was conducted in Napa County. During the inspection 60 free-living vines in riparian habitats near commercial vineyards with GPGV infection were sampled. Samples were tested by real-time reverse transcription PCR (RT-PCR), identifying 23 free-living Vitis spp. positive for GPGV. Later, GPGV infection was confirmed in these plants via end-point RT-PCR and Sanger sequencing. Based on sequence analysis, detected GPGV isolates are more related to the asymptomatic variant of the virus. Vitis species ancestry was determined by DNA fingerprinting. GPGV-infected material included V. californica, V. californica × V. vinifera hybrids and hybrid rootstock cultivars. Here, GPGV is reported for the first time in free-living Vitis spp. The results of this study will support the development of management strategies for GPGV in California and beyond.

13.
Plant Dis ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823612

RESUMO

Virus diseases are major constraints to the production of cucurbits in the Texas Lower Rio Grande Valley. In September 2020, a ~8.1 ha butternut squash (Cucurbita moschata) field in Hidalgo County, Texas, was observed with virus-like symptoms of vein yellowing, leaf curl, mosaic, and foliar chlorosis. The proportion of plants with virus-like symptoms in this field was estimated at 30% and seven samples (symptomatic = 5; non-symptomatic = 2) were collected randomly for virus diagnosis. Initially, equimolar mixtures of total nucleic acid extracts (Dellaporta et. al. 1983) from two symptomatic samples from this field and extracts from 12 additional symptomatic samples from six other fields across south and central Texas was used to generate one composite sample for diagnosis by high throughput sequencing (HTS). The TruSeq Stranded Total RNA with Ribo-Zero Plant Kit (Illumina) was used to construct cDNA library from the composite sample, which was then sequenced on the Illumina NextSeq 500 platform. More than 26 million single-end HTS reads (75 nt each) were obtained and their bioinformatic analyses (Al Rwahnih et al. 2018) revealed several virus-like contigs belonging to different species (data not shown). Among them, 6 contigs that ranged in length from 429 to 3,834 nt shared 96 to 100% identities with isolates of squash vein yellowing virus (SqVYV), genus Ipomovirus, family Potyviridae. To confirm the HTS results, total nucleic acid extracts from the cucurbit samples from all seven fields (n = 46) were used for cDNA synthesis with random hexamers and the PrimeScript 1st strand cDNA Synthesis Kit (Takara Bio). A 1-µL aliquot of cDNA was used in 12.5-µL PCR reaction volumes with PrimeSTAR GXL DNA Polymerase (Takara Bio) and two pairs of SqVYV-specific primers designed based on the HTS derived contigs. The primer pairs SqYVV-v4762: 5'-CTGGATTCTGCTGGAAGATCA & SqYVV-c5512: 5'-CCACCATTAAGGCCATCAAAC and SqYVV-v8478: 5'-TTTCTGGGCAAACAAACATGG & SqYVV-c9715: 5'-TTCAGCGACGTCAAGTGAG targeted ~0.75 kb and ~1.2 kb fragments of the cylindrical inclusion (CI) and the complete coat protein (CP) gene sequences of SqVYV, respectively. The expected DNA band sizes were obtained only from the five symptomatic butternut squash samples from the Hidalgo Co. field. Two amplicons per primer pair from two samples were cloned into pJET1.2/Blunt vector (Life Technologies) and bidirectionally Sanger sequenced, generating 753 nt partial CI specific sequences (MW584341-342) and 1,238 nt that encompassed the complete CP (MW584343-344) of SqVYV. In pairwise comparisons, the partial CI sequences shared 100% nt/aa identity with each other and 98-99% nt/aa identity with corresponding sequences of SqVYV isolate IL (KT721735). The CP cistron of TX isolates shared 100% nt/aa identity with each other and 90-98% nt (97-100% aa) identities with corresponding sequences of several SqVYV isolates in GenBank, with isolates IL (KT721735) and Florida (EU259611) being at the high and low spectrum of nt/aa identity values, respectively. This is the first report of SqVYV in Texas, naturally occurring in butternut squash. SqVYV was first discovered in Florida (Adkins et al. 2007) and subsequently reported from few other states in the U.S. (Adkins et al. 2013; Egel and Adkins 2007; Batuman et al. 2015), Puerto Rico (Acevedo et al. 2013), and locations around the world. The finding shows an expansion of the geographical range of SqVYV and adds to the repertoire of cucurbit-infecting viruses in Texas. Further studies are needed to determine the prevalence of SqVYV in Texas cucurbit fields and an assessment of their genetic diversity.

14.
Plant Dis ; 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33787304

RESUMO

Texas is a major producer of cucurbits such as cantaloupe (Cucumis melo L.), but outbreaks of virus-like diseases often adversely affect yields. Little is known about the identity of the causal or associated viruses. During studies conducted in fall 2020 to explore the virome of cucurbit fields in Texas, a commercial cantaloupe field (~4.1 ha) in Cameron County was observed with virus-like symptoms of interveinal chlorotic mottle and foliar chlorosis and disease incidence was estimated at 100%. Virus-like symptoms including mosaic and leaf curl were also observed in six additional fields across five south and central Texas counties of Atascosa, Hidalgo, Fort Bend, Frio, and Wharton. Forty-six plants, which included 32 symptomatic and 14 non-symptomatic, were sampled from these fields for virus diagnosis and each sample was subjected to total nucleic acid extraction according to Dellaporta et. al. (1983). Initially, equal amounts of nucleic acids from 14 symptomatic plants (two/field) were pooled into one composite sample for preliminary diagnosis by high throughput sequencing (HTS). The cDNA library obtained from the composite sample with a TruSeq Stranded Total RNA with Ribo-Zero Plant Kit (Illumina) was sequenced on the Illumina NextSeq 500 platform, generating ~26.3 M single-end HTS reads (75 nucleotides [nt] each). Analyses of the reads according to Al Rwahnih et al. (2018) revealed several virus-like contigs; among them 23 contigs (206 to 741 nt) shared 98 to 100% nt identities to isolates of cucurbit chlorotic yellows virus (CCYV), genus Crinivirus, family Closteroviridae. Three pairs of CCYV-specific primers were designed from the HTS contigs with primers CCYV-v1330: 5'-AGTCCCTTACCCTGAGATGAA/CCYV-c2369: 5'-CGGAGCATTCGACAACTGAATA targeting ~1 kb fragment of the ORF1a (RNA1), primers CCYV-v4881: 5'-ATAAGGCGGCGACCTAATC/CCYV-c5736: 5'-GATCACTTGACCATCTCCTTCT targeting a ~0.9 kb fragment encompassing the coat protein (CP) cistron of CCYV (RNA2), and primers CCYV-v6362: 5'-CACCTCTTCCAGAACCAGTTAAA/CCYV-c7423: 5'-TGGGAACAACTTATTTCTCCTAGC targeting ~1 kb spanning partial minor coat protein (CPm) and p26 sequences (RNA2). Total nucleic acid extracts of each of the 46 samples from the seven fields were tested by two-step reverse transcription polymerase chain reaction using all three CCYV-specific primer pairs and they yielded amplicons of expected sizes from all five symptomatic cantaloupe samples from the Cameron County field and one additional symptomatic butternut squash sample from a field in Hidalgo County. The DNA bands from three randomly chosen cantaloupe samples were cloned and sequenced as previously described (Oke et al. 2020). In pairwise comparisons, the obtained 1,040 nt ORF1a (MW584332-334), 753 nt complete CP (MW584335-337), and 1,062 nt CPm/p26 (MW584338-340) gene specific sequences from the three samples shared 100% nt identity with each other, and 99-100% nt identities with corresponding RNA1 (AB523788) and RNA2 (AB523788) sequences of the exemplar isolate of CCYV. This is the first report of CCYV in Texas, thus expanding the current geographical range of the virus in the U.S. that includes California (Wintermantel et al. 2019) and Georgia (Kavalappara et al. 2021). The abundance of whiteflies of the Bemisia tabaci species complex in south Texas and other major U.S. cucurbit production areas presents additional challenges to virus disease management.

15.
Plant Dis ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630684

RESUMO

Watermelon (Citrullus lanatus) and other cucurbits are cultivated globally, and Texas ranks among its top 5 producers in the U.S. In July 2020, plants with virus-like disease symptoms consisting of mild leaf crinkling and yellow mosaic patterns were observed in a 174-ha watermelon field in Burleson Co., TX; disease incidence was visually estimated at 5%. Total nucleic acids were extracted from leaf tissues of 5 randomly sampled plants (Dellaporta 1983) and their equimolar amounts were made into a composite sample that was used for cDNA library construction with TruSeq Stranded Total RNA with Ribo-Zero Plant Kit (Illumina). The cDNA library was sequenced on the Illumina NextSeq 500 platform, generating ~37M single-end reads (each 75 nt), which were analyzed as per Al Rwahnih et al. (2018). Of these, 58,200 and 27,500 reads mapped to the genomes of watermelon crinkle leaf-associated virus 1 (WCLaV-1) and WCLaV-2 (Xin et al. 2017), respectively, along with 4 other virus-specific reads (data not shown). The near complete RNA1-RNA3 segments of WCLaV-1 (354-652X) and WCLaV-2 (144-258X) were generated from the mapped reads and they shared ≥96% nt identities with published RNA segments of both viruses. The results were verified by RT-PCR using newly designed primers WCLaV-1vRP: 5'-GGTGAGTTAGTGTGTCTGAAGG/WCLaV-1cRP: 5'-GAGGTTGCCTGAGGTGATAAG to target 881 bp of the RNA1-encoded RNA-dependent RNA polymerase (RdRP), WCLaV-1vMP: 5'-GAAGGTTTGCTCCCTTGAAATG/WCLaV-1cMP: 5'-GACTGTGGCTGAAGAGTCTATG target 538 bp of the RNA2-encoded movement protein (MP), and WCLaV-1vNP: 5'-CGAATAGACTCTGGAGGGTAGA/WCLaV-1cMP: 5'-GAAAGCAAGAAAGCTGGCTAAA target 786 bp of the RNA3-encoded nucleoprotein (NP). Similarly, the WWCLaV-2-specific primers WCLaV-2vRP: 5'-GTCTCACATTCCTGCACTAACT/WCLaV-2cRP: 5'-ATCGGTCCTGGGTTATTTGTATC target 968 bp of the RdRP, WCLaV-2vMP: 5'-GACTTCAGAACCTCAACATCCA/WCLaV-2cMP: 5'-CAAGGGAGAGTGCTGACAAA target 562 bp of the MP, and WCLaV-2vNP: 5'-ATTCCCAGTGAGAGCAACAA/WCLaV-2cMP: 5'-GAGGTGGAGGTAGGAAAGAAAG target 449 bp of the NP. Fresh cDNA synthesized from the 5 samples with PrimeScript First Strand cDNA synthesis kit (Takara Bio) were tested by PCR with all 6 primer pairs using the PrimeSTAR GXL DNA Polymerase kit (Takara Bio). Three of the 5 samples were positive for both viruses and one sample was positive for each virus. The obtained products from 4 samples were cloned individually into pJET1.2/Blunt vector (Thermo Scientific, USA), followed by bidirectional Sanger-sequencing of the plasmids with the GenElute Five-Minute Plasmid Miniprep kit (Sigma-Aldrich). In pairwise comparisons, the partial RNA1-RNA3 sequences of WCLaV-1 (GenBank accession nos. MW559074-82) shared 100% nt/aa identities with each other and with corresponding sequences of WCLaV-1 isolate KF-1 from China (KY781184-86). The partial RNA1-RNA3 sequences of WCLaV-2 (MW559083-91) shared 97-100% nt/96-100% aa identities with each other and with corresponding sequences of WCLaV-2 isolate KF-15 from China (KY781187-89). This is the first report of WCLaV-1 and WCLaV-2 in Texas and the first record of both viruses in the U.S. and elsewhere outside of China. Both negative-sense, single-stranded RNA viruses represent a novel taxon in the family Phenuiviridae (order Bunyavirales) (Xin et al. 2017). While aspects of the biology of both viruses are yet to be elucidated, our results expand their geographical range. The detection primers developed here will be useful for screening cucurbits germplasm to avert their spread.

16.
Plant Dis ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630688

RESUMO

Apricot vein clearing-associated virus is the type species of genus Prunevirus, family Betaflexiviridae. The virus was first discovered from an Italian apricot tree (Prunus armeniaca) showing leaf vein clearing and mottling symptoms (Elbeaino et al. 2014). Since then, apricot vein clearing-associated virus (AVCaV) has been reported in symptomatic and asymptomatic plants from other countries (Marais et al. 2015; Kinoti et al. 2017; Kubaa et al. 2014). In 2018, a domestic selection of a flowering apricot (P. mume cv. Peggy Clarke) (PC01) with no discernible foliar virus-like symptoms was received for inclusion in the Foundation Plant Services (UC-Davis) collection. The plant originated from a private Prunus collection located in California. Total nucleic acids (TNA) were isolated from PC01 leaves using MagMax Plant RNA Isolation Kit (Thermo Fisher Scientific). The TNA were analyzed for a panel of 15 Prunus-infecting viruses by reverse-transcription quantitative PCR (RT-qPCR) (Diaz-Lara et al. 2020). In addition, to screen for sap-transmissible viruses, young leaves of PC01 were homogenized in inoculation buffer and were rubbed onto leaves of herbaceous indicator plants, Chenopodium amaranticolor, C. quinoa, Cucumis sativus, and Nicotiana clevelandii (Rowhani et al. 2005). The source PC01 tested negative for the 15 screened viruses. Interestingly, vein clearing symptoms were observed on leaves of C. quinoa and C. amaranticolor plants (Figure S1). These results suggested the presence of a mechanically transmissible virus in PC01. To determine the identity of mechanically transmissible viral agent, symptomatic C. quinoa and PC01 plant were advanced for high throughput sequencing analysis. Aliquots of TNA from PC01 and C. quinoa were rRNA-depleted and used for cDNA library preparation with TruSeq Stranded Total RNA kit (Illumina). The raw reads were trimmed, de novo assembled, and subsequently were annotated using tBLASTx algorithm (Al Rwahnih et al. 2018). A total of 47,261,138 and 8,812,296 single-end reads were obtained from cDNA libraries of PC01 and C. quinoa, respectively. The de novo assembly generated near-complete contigs resembling AVCaV genome ) from both PC01 and C. quinoa, which were 99.8% identical at the nucleotide level. The longest contig (8,342 nucleotides, 73.5x coverage depth) obtained from PC01 was further completed using SMARTer RACE 5'/3' kit (Takara Bio). The complete genome sequence of AVCaV-PC01 is 8,364 nucleotides long (GenBank: MK170158). The full-length virus genome was compared with GenBank database using BLASTn, which the best hit corresponded to KY132099 with 98% identity. Additionally, AVCaV infection was confirmed in both PC01 selection and the symptomatic C. quinoa by RT-PCR as previously described (Marais et al. 2015). Lastly, symptomatic leaves of C. quinoa were used in leaf dip method to visualize virus particles by transmission electron microscope. As a result, flexuous rod-shaped virions were observed from leaf dips of symptomatic C. quinoa plants (Figure S2). Therefore, our results represent the first report of AVCaV in California, USA. Furthermore, mechanical transmission of an AVCaV isolate infecting flowering apricot to herbaceous hosts was confirmed. Field surveys and biological studies are underway to determine the prevalence of AVCaV in commercial orchards and assess its effect on tree performance.

17.
Plant Dis ; 105(5): 1432-1439, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33048594

RESUMO

In 2012, dormant canes of a proprietary wine grape (Vitis vinifera L.) accession were included in the collection of the University of California-Davis Foundation Plant Services. No virus-like symptoms were elicited when bud chips from propagated own-rooted canes of the accession were graft-inoculated onto a panel of biological indicators. However, chlorotic ringspot symptoms were observed on sap-inoculated Chenopodium amaranticolor Coste & A. Rein and C. quinoa Willd. plants, indicating the presence of a mechanically transmissible virus. Transmission electron microscopy of virus preparations from symptomatic C. quinoa revealed spherical, nonenveloped virions about 27 nm in diameter. Nepovirus-like haplotypes of sequence contigs were detected in both the source grape accession and symptomatic C. quinoa plants via high-throughput sequencing. A novel bipartite nepovirus-like genome was assembled from these contigs, and the termini of each RNA segment were verified by rapid amplification of complementary DNA ends assays. The RNA1 (7,186-nt) of the virus encodes a large polyprotein 1 of 231.1 kDa, and the RNA2 (4,460-nt) encodes a large polyprotein 2 of 148.9 kDa. Each of the polyadenylated RNA segments is flanked by 5'- (RNA1 = 156-nt; RNA2 = 170-nt) and 3'- (RNA1 = 834-nt; RNA2 = 261-nt) untranslated region sequences with >90% identities. Maximum likelihood phylogenetic analyses of the conserved Pro-Pol amino acid sequences revealed the clustering of the new virus within the genus Nepovirus of the family Secoviridae. Considering its biological and molecular characteristics, and based on current taxonomic criteria, we propose that the novel virus, named grapevine nepovirus A, be assigned to the genus Nepovirus.


Assuntos
Nepovirus , Vitis , Nepovirus/genética , Filogenia , Poliproteínas , RNA Viral/genética
18.
Arch Virol ; 165(1): 241-244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701224

RESUMO

A novel virus was discovered in a Rosa wichuraiana Crep. by high-throughput sequencing and tentatively named "rose virus A" (RVA). Based on sequence identity and phylogenetic analysis, RVA represents a new member of the genus Carlavirus (family Betaflexiviridae). The genome of RVA is 8,849 nucleotides long excluding the poly(A) tail and contains six open reading frames (ORFs). The predicted ORFs code for a replicase, triple gene block (TGB), coat protein, and nucleic acid binding protein, as in a typical carlavirus. RVA is the first carlavirus identified in rose and has the highest nucleotide sequence similarity to poplar mosaic virus. Reverse transcription-PCR-based assays were developed to confirm the presence of RVA in the original source and to screen additional rose plants.


Assuntos
Carlavirus/genética , Rosa/virologia , Sequenciamento Completo do Genoma/métodos , Carlavirus/classificação , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia
19.
Arch Virol ; 165(8): 1905-1909, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472290

RESUMO

The complete genome sequences of two grapevine virus L (GVL) isolates collected from the wine grape cultivar Blanc du Bois (Vitis spp.: 'Florida D 6-148'×'Cardinal') in Texas were determined. The two genome sequences (excluding the polyA tail) were each 7594 nucleotide long and 99.7% identical to each other, but they shared only ~74% identity with those of previously published GVL isolates. Further analysis showed that the two Texas GVL isolates also diverged significantly from previously published isolates of the virus in each of the five ORFs at both the nucleotide and amino acid level, indicating that they represent a new phylogroup of this virus.


Assuntos
Flexiviridae/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Vitis/virologia , Florida , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência/métodos , Texas
20.
Arch Virol ; 165(5): 1245-1248, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32227308

RESUMO

The complete genomic sequence of a putative novel member of the family Secoviridae was determined by high-throughput sequencing of a pineapple accession obtained from the National Plant Germplasm Repository in Hilo, Hawaii. The predicted genome of the putative virus was composed of two RNA molecules of 6,128 and 4,161 nucleotides in length, excluding the poly-A tails. Each genome segment contained one large open reading frame (ORF) that shares homology and phylogenetic identity with members of the family Secoviridae. The presence of this new virus in pineapple was confirmed using RT-PCR and Sanger sequencing from six samples collected in Oahu, Hawaii. The name "pineapple secovirus A" (PSVA) is proposed for this putative new sadwavirus.


Assuntos
Ananas/virologia , Genoma Viral , Secoviridae/classificação , Secoviridae/isolamento & purificação , Análise de Sequência de DNA , Biologia Computacional , Ordem dos Genes , Havaí , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Secoviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA