Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831104

RESUMO

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Lúpus Eritematoso Sistêmico/genética , Humanos , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Camundongos , Criança , Feminino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Masculino , Idade de Início , Variação Genética , NF-kappa B/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Adolescente , Células THP-1 , Interferon Tipo I/metabolismo
2.
Nat Commun ; 15(1): 6685, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107301

RESUMO

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.


Assuntos
Heterozigoto , Interferon Tipo I , Helicase IFIH1 Induzida por Interferon , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/genética , Mutação , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Imunidade Inata/genética , Exonucleases/metabolismo , Exonucleases/genética , Células HEK293 , Exorribonucleases/genética , Exorribonucleases/metabolismo , Citosol/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Genes Dominantes
3.
Electron. j. biotechnol ; 52: 59-66, July. 2021. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1283592

RESUMO

BACKGROUND: Many human genetic diseases arise from point mutations. These genetic diseases can theoretically be corrected through gene therapy. However, gene therapy in clinical application is still far from mature. Nearly half of the pathogenic single-nucleotide polymorphisms (SNPs) are caused by G:C>A:T or T:A>C:G base changes and the ideal approaches to correct these mutations are base editing. These CRISPR-Cas9-mediated base editing does not leave any footprint in genome and does not require donor DNA sequences for homologous recombination. These base editing methods have been successfully applied to cultured mammalian cells with high precision and efficiency, but BE4 has not been confirmed in mice. Animal models are important for dissecting pathogenic mechanism of human genetic diseases and testing of base correction efficacy in vivo. Cytidine base editor BE4 is a newly developed version of cytidine base editing system that converts cytidine (C) to uridine (U). RESULTS: In this study, BE4 system was tested in cells to inactivate GFP gene and in mice to introduce single-base substitution that would lead to a stop codon in tyrosinase gene. High percentage albino coat-colored mice were obtained from black coat-colored donor zygotes after pronuclei microinjection. Sequencing results showed that expected base changes were obtained with high precision and efficiency (56.25%). There are no off-targeting events identified in predicted potential off-target sites. CONCLUSIONS: Results confirm BE4 system can work in vivo with high precision and efficacy, and has great potentials in clinic to repair human genetic mutations.


Assuntos
Animais , Camundongos , Adenosina Desaminase , Citosina , Sistemas CRISPR-Cas , Edição de Genes/métodos , Sequência de Bases , Western Blotting , Modelos Animais , Reação em Cadeia da Polimerase em Tempo Real , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA