Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503300

RESUMO

Melanoma is the most invasive skin cancer with the highest risk of death. While it is a serious skin cancer, it is highly curable if detected early. Melanoma diagnosis is difficult, even for experienced dermatologists, due to the wide range of morphologies in skin lesions. Given the rapid development of deep learning algorithms for melanoma diagnosis, it is crucial to validate and benchmark these models, which is the main challenge of this work. This research presents a new benchmarking and selection approach based on the multi-criteria analysis method (MCDM), which integrates entropy and the preference ranking organization method for enrichment of evaluations (PROMETHEE) methods. The experimental study is carried out in four phases. Firstly, 19 convolution neural networks (CNNs) are trained and evaluated on a public dataset of 991 dermoscopic images. Secondly, to obtain the decision matrix, 10 criteria, including accuracy, classification error, precision, sensitivity, specificity, F1-score, false-positive rate, false-negative rate, Matthews correlation coefficient (MCC), and the number of parameters are established. Third, entropy and PROMETHEE methods are integrated to determine the weights of criteria and rank the models. Fourth, the proposed benchmarking framework is validated using the VIKOR method. The obtained results reveal that the ResNet101 model is selected as the optimal diagnosis model for melanoma in our case study data. Thus, the presented benchmarking framework is proven to be useful at exposing the optimal melanoma diagnosis model targeting to ease the selection process of the proper convolutional neural network architecture.

3.
PLoS One ; 14(1): e0209409, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629635

RESUMO

BACKGROUND: Glaucoma is the leading cause of irreversible blindness worldwide. It is a heterogeneous group of conditions with a common optic neuropathy and associated loss of peripheral vision. Both over and under-diagnosis carry high costs in terms of healthcare spending and preventable blindness. The characteristic clinical feature of glaucoma is asymmetrical optic nerve rim narrowing, which is difficult for humans to quantify reliably. Strategies to improve and automate optic disc assessment are therefore needed to prevent sight loss. METHODS: We developed a novel glaucoma detection algorithm that segments and analyses colour photographs to quantify optic nerve rim consistency around the whole disc at 15-degree intervals. This provides a profile of the cup/disc ratio, in contrast to the vertical cup/disc ratio in common use. We introduce a spatial probabilistic model, to account for the optic nerve shape, we then use this model to derive a disc deformation index and a decision rule for glaucoma. We tested our algorithm on two separate image datasets (ORIGA and RIM-ONE). RESULTS: The spatial algorithm accurately distinguished glaucomatous and healthy discs on internal and external validation (AUROC 99.6% and 91.0% respectively). It achieves this using a dataset 100-times smaller than that required for deep learning algorithms, is flexible to the type of cup and disc segmentation (automated or semi-automated), utilises images with missing data, and is correlated with the disc size (p = 0.02) and the rim-to-disc at the narrowest rim (p<0.001, in external validation). DISCUSSION: The spatial probabilistic algorithm is highly accurate, highly data efficient and it extends to any imaging hardware in which the boundaries of cup and disc can be segmented, thus making the algorithm particularly applicable to research into disease mechanisms, and also glaucoma screening in low resource settings.


Assuntos
Algoritmos , Diagnóstico por Computador/métodos , Técnicas de Diagnóstico Oftalmológico/estatística & dados numéricos , Glaucoma/diagnóstico por imagem , Diagnóstico por Computador/estatística & dados numéricos , Glaucoma/diagnóstico , Humanos , Modelos Estatísticos , Disco Óptico/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Análise Espacial , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA