RESUMO
One of the main barriers to explaining the functional significance of glycan-based changes in cancer is the natural epitope heterogeneity found on the surface of cancer cells. To help address this knowledge gap, we focused on designing synthetic tools to explore the role of tumor-associated glycans of MUC1 in the formation of metastasis via association with lectins. In this study, we have synthesized for the first time a MUC1-derived positional scanning synthetic glycopeptide combinatorial library (PS-SGCL) that vary in number and location of cancer-associated Tn antigen using the "tea bag" approach. The determination of the isokinetic ratios necessary for the equimolar incorporation of (glyco)amino acids mixtures to resin-bound amino acid was determined, along with developing an efficient protocol for on resin deprotection of O-acetyl groups. Enzyme-linked lectin assay was used to screen PS-SGCL against two plant lectins, Glycine max soybean agglutinin and Vicia villosa. The results revealed a carbohydrate density-dependent affinity trend and site-specific glycosylation requirements for high affinity binding to these lectins. Hence, PS-SGCLs provide a platform to systematically elucidate MUC1-lectin binding specificities, which in the long term may provide a rational design for novel inhibitors of MUC1-lectin interactions involved in tumor spread and glycopeptide-based cancer vaccines.
Assuntos
Glicopeptídeos , Lectinas , Epitopos , Glicosilação , Mucina-1RESUMO
New bifunctional phase transfer agents were synthesized and investigated for their abilities to promote rapid fluorination at silicon. These agents, dubbed crown ether nucleophilic catalysts (CENCs), are 18-crown-6 derivatives containing a side-arm and a potentially nucleophilic hydroxyl group. These CENCs proved efficacious in the fluorination of hindered silicon substrates, with fluorination yields dependent on the length of linker connecting the metal chelating unit to the hydroxyl group. The efficacy of these CENCs was also demonstrated for rapid radiofluorination under mild conditions for eventual application in molecular imaging with positron emission tomography (PET). The hydrolysis-resistant aryl silicon fragment is promising as a convenient synthon for labeling potential PET radiotracers.
Assuntos
Éteres de Coroa/química , Radioisótopos de Flúor/química , Silício/química , Catálise , HidróliseRESUMO
Phenylcyanocarbene was generated by the reaction of azide with a hypervalent iodonium alkynyl triflate and reacted in situ with 21 different carbocyclic and heterocyclic aromatic compounds. These reactions led to more complex products that frequently underwent subsequent rearrangements. The reactivity was further explored in a mechanistic study to ascertain the chemoselectivity and stereospecificity.
RESUMO
Griseofulvin is a fungal metabolite and antifungal drug used for the treatment of dermatophytosis in both humans and animals. Recently, griseofulvin and its analogues have attracted renewed attention due to reports of their potential anticancer effects. In this study griseofulvin (1) and related analogues (2-6, with 4 being new to literature) were isolated from Xylaria cubensis. Six fluorinated analogues (7-12) were synthesized, each in a single step using the isolated natural products and Selectflour, so as to examine the effects of fluorine incorporation on the bioactivities of this structural class. The isolated and synthesized compounds were screened for activity against a panel of cancer cell lines (MDA-MB-435, MDA-MB-231, OVCAR3, and Huh7.5.1) and for antifungal activity against Microsporum gypseum. A comparison of the chemical space occupied by the natural and fluorinated analogues was carried out by using principal component analysis, documenting that the isolated and fluorinated analogues occupy complementary regions of chemical space. However, the most active compounds, including two fluorinated derivatives, were centered around the chemical space that was occupied by the parent compound, griseofulvin, suggesting that modifications must preserve certain attributes of griseofulvin to conserve its activity.
Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Griseofulvina/farmacologia , Informática Médica , Microsporum/efeitos dos fármacos , Xylariales/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Griseofulvina/química , Griseofulvina/isolamento & purificação , Halogenação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise de Componente Principal , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
GPR55, a G protein-coupled receptor, is an attractive target to alleviate inflammatory and neuropathic pain and treat osteoporosis and cancer. Identifying a potent and selective ligand will aid to further establish the specific physiological roles and pharmacology of the receptor. Towards this goal, a targeted library of 22 compounds was synthesized in a modular fashion to obtain structure-activity relationship information. The general route consisted of coupling a variety of p-aminophenyl sulfonamides to isothiocyanates to form acylthioureas. For the synthesis of a known naphthyl ethyl alcohol motif, route modification led to a shorter and more efficient process. The 22 analogues were analyzed for their ability to serve as agonists at GPR55 and valuable information for both ends of the molecule was ascertained.
Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Tioureia/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores de Canabinoides , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/síntese químicaRESUMO
Dienoic acids and pentadienyl alcohols are coupled in a decarboxylative and dehydrative manner at ambient temperature using Pd(0) catalysis to generate 1,3,6,8-tetraenes. Contrary to related decarboxylative coupling reactions, an anion-stabilizing group is not required adjacent to the carboxyl group. Of mechanistic importance, it appears that both the diene of the acid and the diene of the alcohol are required for this reaction. To further understand this reaction, substitutions at every unique position of both coupling partners was examined and two potential mechanisms are presented.
RESUMO
Here we aimed to explore the feasibility of enhancing the fluorination of organosilanes by appending potassium-chelating groups to the substrates. For this purpose, eight organosilanes were prepared in which a linear or cyclic leaving group, with putative potassium-chelating ability, was attached covalently to a congested silicon atom via an ether linkage to serve as a potential nucleophilic assisting leaving group (NALG). Organosilicon-NALGs with expected strong potassium-chelating capability enhanced reactions with potassium fluoride in acetonitrile to produce organofluorosilanes without any need to separately add phase transfer reagent. Similar rate enhancements were also observed with cyclotron-produced [18F]fluoride ion (t1/2 = 109.7 min, ß+ = 97%) in the presence of potassium carbonate in MeCN-0.5% H2O. This study found that metal-chelating NALG units can accelerate fluorination and radiofluorination reactions at sterically crowded silicon atoms.
RESUMO
A Ritter-like coupling reaction of cyclic alcohols and both aryl and alkyl nitriles to form amides catalyzed by copper (II) triflate is described. These reactions proceed in good yields under mild and often solvent-free conditions. With 2- and 3-substituted cycloalkanols, amide products are formed with near complete retention of configuration. This is likely due to fast nucleophilic capture of a non-planar carbocations (hyperconjomers) stabilized by ring hyperconjugation. A critical aspect of this novel catalytic cycle is the in situ activation of the alcohol substrates by thionyl chloride to form chlorosulfites.
RESUMO
Conditions for the first palladium-catalyzed chemoselective protodecarboxylation of polyenoic acids to give the desired polyenes in good yields are presented. The reactions proceed under mild conditions using either a Pd(0) or Pd(II) catalyst and tolerate a variety of aryl and aliphatic substitutions. Unique aspects of the reaction include the requirement of phosphines, water, and a polyene adjacent to the carboxylic acid.
RESUMO
A palladium(II) catalyst, in the presence of Selectfluor, enables the efficient and chemoselective transformation of primary amides into nitriles. The amides can be attached to aromatic rings, heteroaromatic rings, or aliphatic side chains, and the reactions tolerate steric bulk and electronic modification. Dehydration of a peptaibol containing three glutamine groups afforded structure-activity relationships for each glutamine residue. Thus, this dehydration can act similarly to an alanine scan for glutamines via synthetic mutation.
Assuntos
Amidas/química , Nitrilas/química , Paládio/química , Catálise , Água/químicaRESUMO
Substituted [1,4]thiazepino[2,3-h]quinolinecarboxylic acid 3 is prepared by PPA-catalyzed thermal lactamization of the respective 8-amino-7-[(2-carboxyethyl)thio]-1,4-dihydroquinoline-3-carboxylic acid 9. The latter synthon is obtained by reduction of the 8-nitro-1,4-dihydroquinoline precursor 8 which, in turn, is made accessible via interaction of 3-mercaptopropionic acid with 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-1,4-dihydroquinoline-3-carboxylic acid 7 in the presence of triethylamine. A benzo-homolog of 3, namely tetrahydroquino[7,8-b]benzothiazepine-3-carboxylic acid 6, is analogously prepared via the reaction of 2-mercaptobenzoic acid with 7, followed by reduction of the resulting 7-[(2-carboxyphenyl)thio]-8-nitro product 10 into the corresponding 8-amino derivative 11, and subsequent lactamization. The structures assigned to 3, 6 and 8-11 are based on microanalytical and spectral (IR, MS, NMR) data.
Assuntos
Anti-Infecciosos/síntese química , Quinolinas/síntese química , Quinolonas/química , Tiazepinas/síntese química , Anti-Infecciosos/química , Quinolinas/química , Quinolonas/síntese química , Tiazepinas/químicaRESUMO
Model tetrahydropyrido[3',2':4,5]thieno[2,3-b][1,4]thiazines 9a-c were synthesized via reductive lactamization, using sodium dithionite, of the respective 2-[(carboxyalkyl)thio]-3-nitro-4,7-dihydrothieno[2,3-b]pyridine-5-carboxylic acids 7a-c. The latter derivatives were made via interaction of 2-chloro-7-cyclopropyl-3-nitro-4,7-dihydrothieno[2,3-b]pyridine-5-carboxylic acid (6) with each of alpha-mercaptoacetic, alpha-mercaptopropionic, and alpha-mercaptosuccinic acids and triethylamine in aqueous acetone at room temperature. The structures of 7a-7c and 9a-9c are supported by microanalytical and spectral (IR, MS, NMR) data. Compounds 9a and 9c showed potent inhibitory activity against the IGROV1 (Ovarian Cancer) cell line.
Assuntos
Ácidos Carboxílicos/síntese química , Tiazinas/síntese química , Tiofenos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tiazinas/química , Tiofenos/químicaRESUMO
The conversion of alkynes to their corresponding vinyl triflates in the presence of stoichiometric TMS-triflate was greatly facilitated by the triflate salt of several transition metal catalysts most especially Zn(OTf)2. Products are formed in high regioselectivity under mild conditions. Internal alkynes bearing an aryl substituent afford vinyl triflates with a modest preference for the Z-isomer especially with larger substituents. A mechanism is put forward to explain the unique role of silicon in this system.