Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JMIR Form Res ; 6(4): e36710, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471247

RESUMO

BACKGROUND: There is a paucity of information in the literature on core nursing staff knowledge on the requirements of specific intravenous administration lines for medications regularly given in critical care. There is also a lack of well-researched and appropriate information in the literature for intravenous administration line selection, and the need for filtration, protection from light, and other line-material selection precautions for many critical and noncritical medications used in these settings to maintain their potency and efficacy. OBJECTIVE: We aimed to assess the knowledge gap of clinicians with respect to intravenous administration line set material requirements for critical care medications. METHODS: Data were drawn from a clinician knowledge questionnaire, a region-wide database of administered infusions, and regional data on standard and special intravenous administration line consumption for 1 year (2019-2020) from an enterprise resource planning system log. The clinician knowledge questionnaire was validated with 3 groups (n=35) and then released for a general survey of critical care nurses (n=72) by assessing response dispersal and interrater reliability (Cronbach α=.889). Correct answers were determined by referencing available literature, with consensus between the team's pharmacists. Percentage deviations from correct answers (which had multiple possible selections) were calculated for control and test groups. We reviewed all 3 sources of information to identify the gap between required usage and real usage, and the impact of knowledge deficits on this disparity. RESULTS: Percentage deviations from correct answers were substantial in the control groups and extensive in the test group for all medications tested (percentage deviation range -43% to 93%), with the exception of for total parenteral nutrition. Respondents scored poorly on questions about medications requiring light protection, and there was a difference of 2.75% between actual consumption of lines and expected consumption based on medication type requirement. Confusion over the requirements for low-sorbing lines, light protection of infusions, and the requirement for filtration of specific solutions was evident in all evidence sources. The consumption of low-sorbing lines (125,090/1,454,440, 8.60%) was larger than the regional data of medication usage data would suggest as being appropriate (15,063/592,392, 2.54%). CONCLUSIONS: There is no single source of truth for clinicians on the interactions of critical care intravenous medications and administration line materials, protection from light, and filtration. Nursing staff showed limited knowledge of these requirements. To reduce clinical variability in this area, it is desirable to have succinct easy-to-access information available for clinicians to make decisions on which administration line type to use for each medication. The study's results will be used to formulate solutions for bedside delivery of accurate information on special intravenous line requirements for critical care medications.

2.
JMIR Hum Factors ; 7(3): e20364, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667895

RESUMO

BACKGROUND: There is a paucity of quantitative evidence in the current literature on the incidence of wrong medication and wrong dose administration of intravenous medications by clinicians. The difficulties of obtaining reliable data are related to the fact that at this stage of the medication administration chain, detection of errors is extremely difficult. Smart pump medication library logs and their reporting software record medication and dose selections made by users, as well as cancellations of selections and the time between these actions. Analysis of these data adds quantitative data to the detection of these kinds of errors. OBJECTIVE: We aimed to establish, in a reproducible and reliable study, baseline data to show how metrics in the set-up and programming phase of intravenous medication administration can be produced from medication library near-miss error reports from infusion pumps. METHODS: We performed a 12-month retrospective review of medication library reports from infusion pumps from across a facility to obtain metrics on the set-up phase of intravenous medication administration. Cancelled infusions and resolutions of all infusion alerts by users were analyzed. Decision times of clinicians were calculated from the time-date stamps of the pumps' logs. RESULTS: Incorrect medication selections represented 3.45% (10,017/290,807) of all medication library alerts and 22.40% (10,017/44,721) of all cancelled infusions. Of these cancelled medications, all high-risk medications, oncology medications, and all intravenous medications delivered to pediatric patients and neonates required a two-nurse check according to the local policy. Wrong dose selection was responsible for 2.93% (8533/290,807) of all alarms and 19.08% (8533/44,721) of infusion cancellations. Average error recognition to cancellation and correction times were 27.00 s (SD 22.25) for medication error correction and 26.52 s (SD 24.71) for dose correction. The mean character count of medications corrected from initial lookalike-soundalike selection errors was 13.04, with a heavier distribution toward higher character counts. The position of the word/phrase error was spread among name beginning (6991/10,017, 69.79%), middle (2144/10,017, 21.40%), and end (882/10,017, 8.80%). CONCLUSIONS: The study identified a high number of lookalike-soundalike near miss errors, with cancellation of one medication being rapidly followed by the programming of a second. This phenomenon was largely centered on initial misreadings of the beginning of the medication name, with some incidences of misreading in the middle and end portions of medication nomenclature. The value of an infusion pump showing the entire medication name complete with TALLman lettering on the interface matching that of medication labeling is supported by these findings. The study provides a quantitative appraisal of an area that has been resistant to study and measurement, which is the number of intravenous medication administration errors of wrong medication and wrong dose that occur in clinical settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA