Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 110: 104167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36462823

RESUMO

Climate change increases sugar content in grapes, resulting in unwanted increase in ethanol content of wine. Lachancea thermotolerans ferments glucose and fructose into both ethanol and lactate, decreasing final ethanol content and positively affecting wine acidity. Reported Lachancea thermotolerans strains show big variation in lactate production during fermentation. However, a mechanistic understanding of this lactate producing phenotype is currently lacking. Through a combination of metabolomics, transcriptomics, genomics and computational methods we show that the lactate production is induced by amino acid limitation in a high lactate producing strain. We found in fermentations in synthetic grape juice media that lactate production starts in the last stages of growth, marked by decreased growth rate and increased expression levels of stress related genes. This onset of lactate production is specific for the high lactate producing strain and independent of oxygen availability. The onset of lactate production was changed by increased amino acid content of the media, and it is shown by both computational methods and amino acid measurements that at the onset of lactate production amino acids become limiting for growth. This study shows that lactate production of Lachancea thermotolerans is directly linked to nitrogen availability in the media, an insight that can further aid in the improvement of wine quality.


Assuntos
Ácido Láctico , Saccharomycetales , Etanol , Aminoácidos , Meios de Cultura
2.
BMC Bioinformatics ; 18(1): 510, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162031

RESUMO

BACKGROUND: Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. RESULTS: Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. CONCLUSION: Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Software , Sequenciamento Completo do Genoma/métodos , Animais , DNA de Cloroplastos/genética , Genoma de Cloroplastos
3.
Microbiol Resour Announc ; 10(27): e0007821, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236222

RESUMO

The genome of Bifidobacterium animalis subsp. lactis BB-12 was sequenced using Oxford Nanopore Technologies long-read and Illumina short-read sequencing platforms. A hybrid genome assembly approach was used to construct an updated complete genome sequence for BB-12 containing 1,944,152 bp, with a G+C content of 60.5% and 1,615 genes.

4.
FEMS Microbiol Lett ; 367(20)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107908

RESUMO

Synthesis of polysaccharides by Leuconostoc can result in improved texture of fermented products. A total of 249 Leuconostoc strains were screened for homo-polysaccharide production and for texturing capabilities in milk. A total of six Ln. mesenteroides strains with superior texturing properties had the genetic blueprint for both homo- (HoPS) and hetero-polysaccharide (HePS) synthesis. Only one strain produced texture in milk without added sucrose, suggesting HePS synthesis via the Wzy dependent pathway. In milk acidification experiments with added sucrose, all six strains depleted the sucrose and released fructose. Thus, they can be used for both texture and possibly also for sweetness enhancement.


Assuntos
Microbiologia de Alimentos/métodos , Leuconostoc/metabolismo , Polissacarídeos/biossíntese , Animais , Leite/microbiologia , Polissacarídeos/metabolismo , Sacarose/metabolismo
5.
Sci Rep ; 10(1): 2728, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066773

RESUMO

Streptococcus gordonii and Streptococcus sanguinis belong to the Mitis group streptococci, which mostly are commensals in the human oral cavity. Though they are oral commensals, they can escape their niche and cause infective endocarditis, a severe infection with high mortality. Several virulence factors important for the development of infective endocarditis have been described in these two species. However, the background for how the commensal bacteria, in some cases, become pathogenic is still not known. To gain a greater understanding of the mechanisms of the pathogenic potential, we performed a comparative analysis of 38 blood culture strains, S. sanguinis (n = 20) and S. gordonii (n = 18) from patients with verified infective endocarditis, along with 21 publicly available oral isolates from healthy individuals, S. sanguinis (n = 12) and S. gordonii (n = 9). Using whole genome sequencing data of the 59 streptococci genomes, functional profiles were constructed, using protein domain predictions based on the translated genes. These functional profiles were used for clustering, phylogenetics and machine learning. A clear separation could be made between the two species. No clear differences between oral isolates and clinical infective endocarditis isolates were found in any of the 675 translated core-genes. Additionally, random forest-based machine learning and clustering of the pan-genome data as well as amino acid variations in the core-genome could not separate the clinical and oral isolates. A total of 151 different virulence genes was identified in the 59 genomes. Among these homologs of genes important for adhesion and evasion of the immune system were found in all of the strains. Based on the functional profiles and virulence gene content of the genomes, we believe that all analysed strains had the ability to become pathogenic.


Assuntos
Endocardite Bacteriana/microbiologia , Endocardite/microbiologia , Genoma Bacteriano , Infecções Estreptocócicas/microbiologia , Streptococcus gordonii/genética , Streptococcus sanguis/genética , Fatores de Virulência/genética , Endocardite/patologia , Endocardite Bacteriana/patologia , Endocárdio/microbiologia , Endocárdio/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Aprendizado de Máquina , Boca/microbiologia , Boca/patologia , Filogenia , Infecções Estreptocócicas/patologia , Streptococcus gordonii/classificação , Streptococcus gordonii/isolamento & purificação , Streptococcus gordonii/patogenicidade , Streptococcus sanguis/classificação , Streptococcus sanguis/isolamento & purificação , Streptococcus sanguis/patogenicidade , Simbiose/fisiologia , Virulência , Fatores de Virulência/classificação , Fatores de Virulência/metabolismo
6.
Mitochondrial DNA B Resour ; 2(1): 139-140, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473744

RESUMO

The Oriental Hornet (Vespa orientalis) is a social insect belonging to the Vespiade family (Wasps, Hornets, Yellowjackets), genus Vespa (true Hornets). The oriental hornet is a scavenger and an agricultural pest, especially to bee farmers, but is also recently described as a harvester of solar energy. Here, we report the mitochondrial genome sequence of the Oriental Hornet, Vespa orientalis F., which may play a vital role in understanding this wasp biology, light trapping and generation of electricity. The mitochondrial genome of this hornet is 16,099 bp in length, containing 13 protein-coding genes, 21 transfer RNA genes, and 2 ribosomal RNA genes. The overall base composition of the heavy-strand is 40.3% A, 5.9% C, 13.2% G, and 40.6% T, the percentages of A and T being higher than that of G and C. The mitochondrial genome of the Oriental Hornet, Vespa orientalis F. represents the first mitogenome of a solar energy harvesting insect.

7.
Mitochondrial DNA B Resour ; 2(2): 548-549, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-33473895

RESUMO

We present the complete mitochondrial genome of honey bee subspecies, Apis mellifera sahariensis (Apidae) belonging to the African lineage. The assembled circular genome has a length of 16,569 bp which comprises 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and AT rich region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA