Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(6): 102067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690209

RESUMO

Background and objectives: For centuries, plant seed extracts have been widely used and valued for their benefits. They have been used in food, perfumes, aromatherapy, and traditional medicine. These natural products are renowned for their therapeutic properties and are commonly used in medicinal treatments. Their significant pharmacological profiles provide an excellent hallmark for the prevention or treatment of various diseases. In this study, we comprehensively evaluated the biological and pharmacological properties of nutmeg seeds and explored their efficacy in treating various illnesses. Method: Published articles in databases including Google Scholar, PubMed, Elsevier, Scopus, ScienceDirect, and Wiley, were analyzed using keywords related to nutmeg seed. The searched keywords were chemical compounds, antioxidants, anti-inflammatory, antibacterial, antifungal, antiviral, antidiabetic, anticancer properties, and their protective mechanisms in cardiovascular and Alzheimer's diseases. Results & discussion: Nutmeg seeds have been reported to have potent antimicrobial properties against a wide range of various bacteria and fungi, thus showing potential for combating microbial infections and promoting overall health. Furthermore, nutmeg extract effectively reduces oxidative stress and inflammation by improving the body's natural antioxidant defense mechanism. Nutmeg affected lipid peroxidation, reduced lipid oxidation, reduced low-density lipoprotein (LDL), and increased phospholipid and cholesterol excretion. In addition, nutmeg extract improves the modulation of cardiac metabolism, accelerates cardiac conductivity and ventricular contractility, and prevents cell apoptosis. This study elucidated the psychotropic, narcotic, antidepressant, and anxiogenic effects of nutmeg seeds and their potential as a pharmaceutical medicine. Notably, despite its sedative and toxic properties, nutmeg ingestion alone did not cause death or life-threatening effects within the dosage range of 20-80 g powder. However, chemical analysis of nutmeg extracts identified over 50 compounds, including flavonoids, alkaloids, and polyphenolic compounds, which exhibit antioxidant properties and can be used as phytomedicines. Moreover, the exceptional pharmacokinetics and bioavailability of nutmeg have been found different for different administration routes, yet, more clinical trials are still needed. Conclusion: Understanding the chemical composition and pharmacological properties of nutmeg holds promise for novel drug discovery and therapeutic advancements. Nutmeg seed offers therapeutic and novel drug prospects that can revolutionize medicine. By delving into their pharmacological properties, we can uncover the vast potential possibilities of this natural wonder.

2.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985784

RESUMO

The genus Nepeta belongs to the largest Lamiaceae family, with 300 species, which are distributed throughout the various regions of Africa, Asia, India, and America. Along with other plant families distinguished by their medicinal and therapeutic values, the Nepeta genus of Lameaceae remains relatively valuable. Hence, the phytochemicals of N. paulsenii Briq. were extracted using different plant parts, i.e., leaves, stem, roots, flowers, and the whole plant by using various solvents (ethanol, water, and ethyl acetate), obtaining 15 fractions. Each extract of dried plant material was analyzed by FT-IR and GC-MS to identify the chemical constituents. The cytotoxicity of each fraction was analyzed by MTT assay and mitochondrial membrane potential and nuclear condensation assays against lung cancer cells. Among the ethyl acetate and ethanolic extracts, the flowers showed the best results, with IC50 values of 51.57 µg/mL and 50.58 µg/mL, respectively. In contrast, among the water extracts of the various plant segments, the stem showed the best results, with an IC50 value of 123.80 µg/mL. 5-flourouracil was used as the standard drug, providing an IC50 value of 83.62 µg/mL. The Hoechst 33342 stain results indicated apoptotic features, i.e., chromatin dissolution and broken down, fragmented, and crescent-shaped nuclei. The ethanolic extracts of the flowers showed more pronounced apoptotic effects on the cells. The mitochondrial membrane potential indicated that rhodamine 123 fluorescence signals suppressed mitochondrial potential due to the treatment with the extracts. Again, the apoptotic index of the ethanolic extract of the flowers remained the highest. Hence it can be concluded that the flower part of N. paulsenii Briq. was found to be the most active against the A459 human lung cancer cell line.


Assuntos
Neoplasias Pulmonares , Nepeta , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Potencial da Membrana Mitocondrial , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular , Neoplasias Pulmonares/tratamento farmacológico , Etanol/farmacologia , Água/farmacologia
3.
Regul Toxicol Pharmacol ; 81: 457-467, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27756558

RESUMO

Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies.


Assuntos
Fermentação , Inocuidade dos Alimentos , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Óleo de Coco , Relação Dose-Resposta a Droga , Feminino , Malásia , Masculino , Óleos de Plantas/administração & dosagem , Ratos , Ratos Sprague-Dawley
4.
RSC Adv ; 14(31): 22312-22325, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010920

RESUMO

Crystal violet (CV) dye, because of its non-biodegradability and harmful effects, poses a significant challenge for wastewater treatment. This study addresses the efficiency of easily accessible coal fly ash (CFA)-based adsorbents such as raw coal fly ash (RCFA) and surface enhanced coal fly ash (SECFA), in removing CV dye from waste effluents. Various analytical techniques such as FTIR, XRD, SEM, TEM, BET, zeta sizer and zeta potential were employed for the characterization of the adsorbents and dye-loaded samples. BET revealed that RCFA possesses a surface area of 19.370 m2 g-1 and SECFA of 27.391 m2 g-1, exhibiting pore volumes of 0.1365 cm3 g-1 and 0.1919 cm3 g-1 respectively. Zeta-sizer and potential analysis showed the static charges of RCFA as -27.3 mV and SECFA as -28.2 mV, with average particle sizes of 346.6 and 315.3 nm, respectively. Langmuir and Freundlich adsorption isotherms were also employed for adsorption studies. Employing central composite design (CCD) of response surface methodology (RSM), the maximum CV removal was 81.52% for RCFA and 97.52% for SECFA, providing one minute contact time, 0.0125 g adsorbent dose and 10 ppm dye concentration. From the thermodynamic studies, all the negative values of ΔG° showed that all the adsorption processes of both adsorbents were spontaneous in nature.

5.
RSC Adv ; 14(23): 16138-16149, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38769951

RESUMO

In this study, the methyl orange (MO) dye has been degraded after screening several azo dyes due to its effective results and being toxic and carcinogenic to aquatic life and humans. An environmentally friendly, economical, and green method for water purification was used in this study using the photooxidative method. Several organic acids were screened for oxidative applications against various azo dyes but due to better results, methyl orange was selected for the whole study. Ascorbic acid, also known as vitamin C, was found to be best for photodegradation due to its high oxidative activity among various organic acids utilized. A newly developed photoreactor box has been used to conduct the photooxidation process. To evaluate the degradation efficiency of AsA, photooxidative activity was monitored periodically. When the dose of AsA was used at a contact time of 180 minutes, degradation efficiency was 96%. The analysis of degraded products was performed using HPLC and GC-MS. The nucleophilicity of HOMO-LUMO and MEPs was confirmed using density functional theory. For the optimization of the process, central composite design (CCD) in Response Surface Methodology (RSM) was utilized.

6.
ACS Omega ; 9(10): 12069-12083, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496983

RESUMO

This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater treatment.

7.
Adv Pharmacol Pharm Sci ; 2022: 4495688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677711

RESUMO

Medicinal plants are the primary raw materials used in the production of medicinal products all over the world. As a result, more study on plants with therapeutic potential is required. The tropical tree Ziziphus spina belongs to the Rhamnaceae family. Biological reports and traditional applications including management of diabetes and treatment of malaria, digestive issues, typhoid, liver complaints, weakness, skin infections, urinary disorders, obesity, diarrhoea, and sleeplessness have all been treated with different parts of Z. spina all over the globe. The plant is identified as a rich source of diverse chemical compounds. This study is a comprehensive yet detailed review of Z. spina based on major findings from around the world regarding ethnopharmacology, biological evaluation, and chemical composition. Scopus, Web of Science, BioMed Central, ScienceDirect, PubMed, Springer Link, and Google Scholar were searched to find published articles. From the 186 research articles reviewed, we revealed the leaf extract to be significant against free radicals, microbes, parasites, inflammation-related cases, obesity, and cancer. Chemically, polyphenols/flavonoids were the most reported compounds with a composition of 66 compounds out of the total 193 compounds reported from different parts of the plant. However, the safety and efficacy of Z. spina have not been wholly assessed in humans, and further well-designed clinical trials are needed to corroborate preclinical findings. The mechanism of action of the leaf extract should be examined. The standard dose and safety of the leaf should be established.

8.
Adv Pharmacol Pharm Sci ; 2022: 3837965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528115

RESUMO

Garcinia kola belongs to the Garcinia genus of the Clusiaceae family and Malpighiales order. It contains more than 180 members all over the globe. It is found all over Asia and in tropical African countries. In Africa, traditionally, G kola is used to manage and treat cancer, diabetes, malaria, analgesics, hypertension, and other numerous ailments. This review aimed to comprehensively update relevant information regarding the pharmacological potential of Garcinia kola. Electronic databases such as ScienceDirect, PubMed, Wiley, Google Scholar, Hindawi, and Springer extracted valuable information from original scientific research papers. Inclusion Criteria. Antioxidant, antimicrobial, antidiabetic, antibacterial, medications, antiviral, traditional medicine, ethnopharmacology, toxicity, cytotoxic action, chemical composition, mineral elements, GCMS analysis, and any other related phrases were used as filters to find studies. Exclusion Criteria. Data from questionable online sources, as well as thesis reports and review publications, were excluded from this investigation. The investigation revealed that seeds of G. kola are very efficient as antioxidant, antimicrobial, antidiabetic, antihypertension, antianalgesic, and anti-inflammatory. The study also found that too much consumption of the seeds caused low fertility and toxicity. However, the safety and efficacy of G. kola have not been wholly assessed in humans, and further well-designed clinical trials are needed to corroborate preclinical findings. The mechanism of action of the seed extract should be examined. The standard dose and safety of the seed should be established.

9.
Saudi J Biol Sci ; 25(8): 1524-1534, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30591773

RESUMO

Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p < 0.05). The hexane extract inhibited the brain cell line (U-87 MG) with an IC50 of 50 µg/ml and significantly promoted cell apoptosis through the mitochondrial pathway and DNA fragmentation p < 0.001. The ethanol extract demonstrated potent antioxidants; DPPH, FRAP, and ABTS with an IC50 value of 52, 48.5 and 64.7 µg/ml, respectively. In addition, the hexane and ethyl acetate extract significantly (p < 0.001) inhibited the sprouting of microvessels by 100% and 81.2%, at 100 µg/ml, respectively. The GC analysis of the most active extract (hexane) showed the presence of several potent phytochemicals such as stigmasterol, beta-Sitosterol, squalene, lupeol, octadecadienoic acid, and oleic acid.

10.
Am J Transl Res ; 9(11): 4936-4944, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218091

RESUMO

OBJECTIVE: The process of wound healing involves activation of keratinocytes, fibroblasts, endothelial cells, etc. Angiogenesis is crucial during the process of wound healing. Virgin coconut oil is widely utilized in South Asia for various purposes including food, medicinal and industrial applications. This study aimed to evaluate the potency of fermented virgin coconut oil (FVCO) in angiogenesis and wound healing via both in vitro and in vivo assays. METHODS: Human umbilical vein endothelial (HUVEC), fibroblast (CCD-18) and retinal ganglion (RGC-5) cells were cultured in medium containing different concentrations of FVCO. The proliferation, migration and morphological changes of cells were determined. The angiogenic effect of FVCO was evaluated by rat aortic assay. The therapeutic effect of FVCO on wound healing was further assessed in a wound excision model in Sprague Dawley rats. The expression of phospho-VEGFR2 (vascular endothelial growth factor receptor 2) in HUVECs was detected by Western blot. RESULTS: FVCO (6 and 12 µg/mL) significantly improved the proliferation of HUVEC, CCD-18 and RGC-5 cells (P < 0.05 or 0.01). FVCO (25 µg/mL) markedly increased the migration ability of CCD-18 and RGC-5 cells (P < 0.05). FVCO did not affect cell morphology as indicated by fluorescein diacetate (FDA), rhodamine 123 and Hoechst staining. FVCO (25, 50 and 100 µg/mL) significantly stimulated the ex vivo blood vessel formation as compared with negative control (P < 0.05). Rats in FVCO group had significantly smaller wound size, higher wound healing percentage, and shorter wound closure time when compared with control group since day 8 (P < 0.05), suggesting that oral FVCO administration notably promoted the wound healing process. FVCO treatment (6 and 12 µg/mL) significantly enhanced the phospho-VEGFR2 expression in HUVECs (P = 0.006 and 0.000, respectively). CONCLUSION: Our study confirms a high angiogenic and wound healing potency of FVCO that might be mediated by the regulation of VEGF signing pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA