Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119319, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857211

RESUMO

Gas-to-liquid (GTL) sludge is a specific wastewater treatment by-product, which is generated during the industrial process of natural gas conversion to transportation fuels. This least studied sludge is pathogen-free and rich in organic carbon and plant nutrients. Therefore, it can be reused for soil enhancement as a sustainable management strategy to mitigate landfill gas emissions. In this field study, we compared the performance of soil treatments with GTL sludge to the more conventional chemical fertilizers and cow manure compost for the cultivation of cotton under hyperarid conditions. After a complete growing season, GTL sludge application resulted in the enhancement of soil properties and plant growth compared to conventional inputs. As such, there was a significant dose-dependent increase of soil organic matter (4.01% and 4.54%), phosphorus (534 and 1090 mg kg-1), and cumulative lint yield (4.68 and 5.67 t ha-1) for GTL sludge application rates of 1.5% and 3%, respectively. The produced fiber quality was adequate for an upland cotton variety (Gossypium hirsutum var. MAY 344) and appeared more dependent on the prevailing climate conditions than soil treatments. On the other hand, the adverse effects generally related to industrial sludge reuse were not significant and did not affect the designed agro-environmental system. Accordingly, plants grown on GTL sludge-amended soils showed lower antioxidant activity despite significant salinity increase. In addition, the concentrations of detected heavy metals in soil were within the standards' limits, which did not pose environmental issues under the described experimental conditions. Leachate analysis revealed no risks for groundwater contamination with phytotoxic metals, which were mostly retained by the soil matrix. Therefore, recycling GTL sludge as an organic amendment can be a sustainable solution to improve soil quality and lower carbon footprint. To reduce any environmental concerns, an application rate of 1.5% could be provisionally recommended since a two-fold increase in sludge dose did not result in a significant yield improvement.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Esgotos/química , Gossypium , Poluentes do Solo/análise , Carbono , Metais Pesados/análise , Fertilizantes/análise
2.
Data Brief ; 32: 106088, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32793780

RESUMO

The dataset in this work compares the response of two fodder crops, alfalfa (Medicago sativa) and buffel grass (Cenchrus ciliaris), to industrial biosludge amendment of an arid soil in the State of Qatar. It also evaluates the response of soil structure parameters in the biosludge-amended soils containing the different fodder crops. The dataset relates to our previously published works detailed subsequently. The underlying data comparing the water storage capacity and pore structure evolution of the planted soils treated with 0.75, 1.5, and 3% biosludge contents, which showed good outcomes in the companion articles, alongside soil only and soil-fertilizer controls, are presented. These are shown in terms of the percentage of irrigation water leached, and variations in the logarithmic mean T2 (i.e., T2LM - a proxy for mean pore size) and cumulative porosity, respectively. Data on plant growth parameters such as the number of days to flowering, plant height, and aboveground fresh biomass weight in individual replicates of the different treatments as a percentage of the soil-fertilizer control are also shown. The dataset shows the different responses of both plants and the planted soils to amendments with industrial biosludge from the wastewater treatment plant of a gas-to-liquid (GTL) plant.

3.
Chemosphere ; 247: 125886, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31955045

RESUMO

The agricultural industry in Qatar is highly dependent on using soil enhancing materials due to challenging soil and climatic conditions. Hence, this work investigated the potential of industrial biosludge from the wastewater treatment plant (WWTP) of a Gas-to-Liquids (GTL) plant to enhance an arid soil compared to fertilizer and compost. A fodder crop, buffel grass (Cenchrus ciliaris), was grown in semi-controlled pots containing a typical Qatari agricultural soil and admixtures over a 12-month period. The treatments included soil plus five biosludge percentage contents: 0.75, 1.5, 3, 6 and 12%. These were compared with soil only, soil plus 20-20-20 NPK fertilizer and soil plus 3% compost controls. Analyses of soil physical and chemical properties, the resulting leachate, and plant growth characteristics were conducted at set periods. The results indicate that up to 3% biosludge content led to better plant growth compared to the controls, with the optimum at 1.5% biosludge content for all growth characteristics studied. Biosludge addition to soil increased the volume of different pore types, especially micropores, which enhanced water retention and influenced plant growth. Regression modelling identified leachate Si and Fe concentrations, and biomass K content as the most influential variables for fresh biomass weight, plant height and the number of tillers, respectively. Biosludge addition to the soil around the optimum level did not cause detrimental changes to the resulting leachate and plant biomass. The findings of this work could lead to minimization of biosludge landfilling and allow for savings in fertilizers and irrigation water in arid regions.


Assuntos
Agricultura/métodos , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Biomassa , Cenchrus , Fertilizantes , Catar , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA