Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 300(6): 107398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777145

RESUMO

The unfolded protein response pathways (UPR), autophagy, and compartmentalization of misfolded proteins into inclusion bodies are critical components of the protein quality control network. Among inclusion bodies, aggresomes are particularly intriguing due to their association with cellular survival, drug resistance, and aggresive cancer behavior. Aggresomes are molecular condensates formed when collapsed vimentin cages encircle misfolded proteins before final removal by autophagy. Yet significant gaps persist in the mechanisms governing aggresome formation and elimination in cancer cells. Understanding these mechanisms is crucial, especially considering the involvement of LC3A, a member of the MAP1LC3 family, which plays a unique role in autophagy regulation and has been reported to be epigenetically silenced in many cancers. Herein, we utilized the tetracycline-inducible expression of LC3A to investigate its role in choroid plexus carcinoma cells, which inherently exhibit the presence of aggresomes. Live cell imaging was employed to demonstrate the effect of LC3A expression on aggresome-positive cells, while SILAC-based proteomics identified LC3A-induced protein and pathway alterations. Our findings demonstrated that extended expression of LC3A is associated with cellular senescence. However, the obstruction of lysosomal degradation in this context has a deleterious effect on cellular viability. In response to LC3A-induced autophagy, we observed significant alterations in mitochondrial morphology, reflected by mitochondrial dysfunction and increased ROS production. Furthermore, LC3A expression elicited the activation of the PERK-eIF2α-ATF4 axis of the UPR, underscoring a significant change in the protein quality control network. In conclusion, our results elucidate that LC3A-mediated autophagy alters the protein quality control network, exposing a vulnerability in aggresome-positive cancer cells.


Assuntos
Fator 4 Ativador da Transcrição , Autofagia , Fator de Iniciação 2 em Eucariotos , Proteínas Associadas aos Microtúbulos , Mitocôndrias , eIF-2 Quinase , Humanos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética
2.
J Neurooncol ; 152(1): 67-78, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33501605

RESUMO

PURPOSE: Protein misfolding and aggregation result in proteotoxic stress and underlie the pathogenesis of many diseases. To overcome proteotoxicity, cells compartmentalize misfolded and aggregated proteins in different inclusion bodies. The aggresome is a paranuclear inclusion body that functions as a storage compartment for misfolded proteins. Choroid plexus tumors (CPTs) are rare neoplasms comprised of three pathological subgroups. The underlying mechanisms of their pathogenesis remain unclear. This study aims to elucidate the prognostic role and the biological effects of aggresomes in pediatric CPTs. METHODS: We examined the presence of aggresomes in 42 patient-derived tumor tissues by immunohistochemistry and we identified their impact on patients' outcomes. We then investigated the proteogenomics signature associated with aggresomes using whole-genome DNA methylation and proteomic analysis to define their role in the pathogenesis of pediatric CPTs. RESULTS: Aggresomes were detected in 64.2% of samples and were distributed among different pathological and molecular subgroups. The presence of aggresomes with different percentages was correlated with patients' outcomes. The ≥ 25% cutoff had the most significant impact on overall and event-free survival (p-value < 0.001) compared to the pathological and the molecular stratifications. CONCLUSIONS: These results support the role of aggresome as a novel prognostic molecular marker for pediatric CPTs that was comparable to the molecular classification in segregating samples into two distinct subgroups, and to the pathological stratification in the prediction of patients' outcomes. Moreover, the proteogenomic signature of CPTs displayed altered protein homeostasis, manifested by enrichment in processes related to protein quality control.


Assuntos
Neoplasias do Plexo Corióideo/patologia , Corpos de Inclusão/patologia , Criança , Feminino , Humanos , Masculino , Prognóstico , Proteômica , Proteostase/fisiologia , Estudos Retrospectivos
3.
Sci Rep ; 14(1): 21293, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266576

RESUMO

Zic family member ZIC4 is a transcription factor that has been shown to be silenced in several cancers. However, understanding the regulation and function of ZIC4 in pediatric choroid plexus tumors (CPTs) remained limited. This study employed data mining and bioinformatics analysis to investigate the DNA methylation status of ZIC4 in CPTs and its correlation with patient survival. Our results unveiled ZIC4 methylation as a segregating factor, dividing CPT cohorts into two clusters, with hyper-methylation linked to adverse prognosis. Hyper-methylation of ZIC4 was confirmed in a choroid plexus carcinoma-derived cell line (CCHE-45) by bisulfite sequencing. Furthermore, our study demonstrated that demethylating agent and a histone methyltransferase inhibitor could reverse ZIC4 silencing. RNA sequencing and proteomic analysis showed that ZIC4 over-expression influenced genes and proteins involved in immune response, antigen processing and presentation, endoplasmic reticulum stress, and metabolism. Functionally, re-expressing ZIC4 negatively impacted cell proliferation and migration. Ultimately, these findings underscore ZIC4 hyper-methylation as a prognostic marker in CPTs and shed light on potential mechanisms underlying its tumor suppressor role in CPC. This insight paves the way for novel therapeutic targets in treating aggressive CPTs.


Assuntos
Neoplasias do Plexo Corióideo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/metabolismo , Neoplasias do Plexo Corióideo/patologia , Linhagem Celular Tumoral , Inativação Gênica , Carcinoma/genética , Carcinoma/metabolismo , Feminino , Masculino , Proliferação de Células/genética , Prognóstico , Criança , Lactente , Pré-Escolar , Genes Supressores de Tumor , Movimento Celular/genética , Proteínas do Tecido Nervoso
4.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681913

RESUMO

Osteosarcoma is a primary malignant bone tumor affecting adolescents and young adults. This study aimed to identify proteomic signatures that distinguish between different osteosarcoma subtypes, providing insights into their molecular heterogeneity and potential implications for personalized treatment approaches. Using advanced proteomic techniques, we analyzed FFPE tumor samples from a cohort of pediatric osteosarcoma patients representing four various subtypes. Differential expression analysis revealed a significant proteomic signature that discriminated between these subtypes, highlighting distinct molecular profiles associated with different tumor characteristics. In contrast, clinical determinants did not correlate with the proteome signature of pediatric osteosarcoma. The identified proteomics signature encompassed a diverse array of proteins involved in focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathways, and proteoglycans in cancer, among the top enriched pathways. These findings underscore the importance of considering the molecular heterogeneity of osteosarcoma during diagnosis or even when developing personalized treatment strategies. By identifying subtype-specific proteomics signatures, clinicians may be able to tailor therapy regimens to individual patients, optimizing treatment efficacy and minimizing adverse effects.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Criança , Adulto Jovem , Humanos , Fosfatidilinositol 3-Quinases , Proteômica , Osteossarcoma/genética , Proteoglicanas , Neoplasias Ósseas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA