Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824826

RESUMO

Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade". These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.

2.
Mol Ecol ; 32(2): 492-503, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326301

RESUMO

Numerous high-elevation alpine plants of the Qinghai-Tibet Plateau (QTP) also have disjunct distribution in adjacent low-altitude mountains. The out-of-QTP versus into-the-QTP hypothesis of alpine plants provide strong evidence for the highly disputed assumption of the massive ice sheet developed in the central plateau during the Last Glacial Maximum (LGM). In this study, we sequenced the genomes of most known populations of Megadenia, a monospecific alpine genus of Brassicaceae distributed primarily in the QTP, though rarely found in adjacent low-elevation mountains of north China and Russia (NC-R). All sequenced samples clustered into four geographic genetic groups: one pair was in the QTP and another was in NC-R. The latter pair is nested within the former, and these findings support the out-of-QTP hypothesis. Dating the four genetic groups and niche distribution suggested that Megadenia migrated out of the QTP to adjacent regions during the LGM. The NC-R group showed a decrease in the effective population sizes. In addition, the genes with high genetic divergences in the QTP group were mainly involved in habitat adaptations during low-altitude colonization. These findings reject the hypothesis of development massive ice sheets, and support glacial survival of alpine plants within, as well as further migration out of, the QTP.


Assuntos
Brassicaceae , Tibet , Brassicaceae/genética , China , Ecossistema , Plantas , Genômica
3.
Plant Physiol ; 190(1): 403-420, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35670733

RESUMO

Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.


Assuntos
Brassicaceae , Genomas de Plastídeos , Brassicaceae/genética , Evolução Molecular , Especiação Genética , Genomas de Plastídeos/genética , Filogenia , Plastídeos/genética
4.
Plant Cell ; 31(11): 2596-2612, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451448

RESUMO

Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.


Assuntos
Brassicaceae/genética , Cromotripsia , Diploide , Evolução Molecular , Genoma de Planta , Arabidopsis/genética , Brassicaceae/classificação , Cromossomos de Plantas , Hibridização Genética , Filogenia , Poliploidia
5.
Proc Natl Acad Sci U S A ; 116(14): 7137-7146, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894495

RESUMO

Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.


Assuntos
Adaptação Fisiológica/genética , Altitude , Arabidopsis/genética , Brassicaceae/genética , Genes de Plantas/genética , Aclimatação/genética , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Arabidopsis/fisiologia , Brassicaceae/fisiologia , Capsella/genética , Capsella/fisiologia , Mudança Climática , Reparo do DNA/genética , Resistência à Doença/genética , Ambientes Extremos , Dosagem de Genes , Genes de Plantas/fisiologia , Proteínas Nucleares/genética , Filogenia , Proteínas de Plantas/genética , Seleção Genética , Autofertilização/genética , Alinhamento de Sequência , Tibet , Sequenciamento Completo do Genoma
6.
Mol Phylogenet Evol ; 153: 106940, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32818597

RESUMO

Euclidieae, a morphologically diverse tribe in the family Brassicaceae (Cruciferae), consists of 29 genera and more than 150 species distributed mainly in Asia. Prior phylogenetic analyses on Euclidieae are inadequate. In this study, sequence data from the plastid genome and nuclear ribosomal DNA of 72 species in 27 genera of Euclidieae were used to infer the inter- and intra-generic relationships within. The well-resolved and strongly supported plastome phylogenies revealed that Euclidieae could be divided into five clades. Both Cymatocarpus and Neotorularia are polyphyletic in nuclear and plastome phylogenies. Besides, the conflicts of systematic positions of three species of Braya and two species of Solms-laubachia s.l. indicated that hybridization and or introgression might have happened during the evolutionary history of the tribe. Results from divergence-time analyses suggested an early Miocene origin of Euclidieae, and it probably originated from the Central Asia, Pamir Plateau and West Himalaya. In addition, multiple ndh genes loss and pseudogenization were detected in eight species based on comparative genomic study.


Assuntos
Brassicaceae/classificação , Brassicaceae/genética , DNA Ribossômico/genética , Genomas de Plastídeos/genética , Filogenia , Ásia , Núcleo Celular/genética , Evolução Molecular , Genômica , Hibridização Genética
7.
New Phytol ; 222(3): 1638-1651, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735246

RESUMO

The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.


Assuntos
Brassicaceae/classificação , Brassicaceae/genética , Variação Genética , Filogenia , Característica Quantitativa Herdável , Éxons/genética , Funções Verossimilhança , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética
8.
Am J Bot ; 105(3): 463-469, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29574686

RESUMO

PREMISE OF THE STUDY: Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear markers obtained robust estimates for relationships among 14 of 17 families. Here we report a complete family-level phylogeny estimated using the plastid genome. METHODS: We conducted phylogenetic analyses on a concatenated data set comprising 44,926 bp from 72 plastid genes for species distributed across all 17 families. Our analysis includes three additional families, Tovariaceae, Salvadoraceae, and Setchellanthaceae, that were omitted in the previous phylotranscriptomic study. KEY RESULTS: Our phylogenetic analyses obtained fully resolved and strongly supported estimates for all nodes across Brassicales. Importantly, these findings are congruent with the topology reported in the phylotranscriptomic study. This consistency suggests that future studies could utilize plastid genomes as markers for resolving relationships within some notoriously difficult clades across Brassicales. We used this new phylogenetic framework to verify the placement of the At-α event near the origin of Brassicaceae, with median date estimates of 31.8 to 42.8 million years ago and restrict the At-ß event to one of two nodes with median date estimates between 85 to 92.2 million years ago. These events ultimately gave rise to novel chemical defenses and are associated with subsequent shifts in net diversification rates. CONCLUSIONS: We anticipate that these findings will aid future comparative evolutionary studies across Brassicales, including selecting candidates for whole-genome sequencing projects.


Assuntos
Evolução Biológica , Resistência à Doença/genética , Genes de Plantas , Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , Poliploidia , Brassicaceae/química , Brassicaceae/genética , Núcleo Celular , Evolução Molecular , Magnoliopsida/química , Plastídeos , Especificidade da Espécie
9.
BMC Genomics ; 18(1): 176, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209119

RESUMO

BACKGROUND: The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. RESULTS: Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. CONCLUSIONS: Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.


Assuntos
Brassicaceae/genética , Cloroplastos/genética , Genoma de Cloroplastos/genética , Filogenia , Teorema de Bayes , Brassicaceae/classificação , Genes de Plantas/genética , Funções Verossimilhança , Alinhamento de Sequência
10.
Am J Bot ; 104(7): 1042-1054, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28743759

RESUMO

PREMISE OF THE STUDY: The Irano-Turanian region harbors three biodiversity hotspots and ∼25% of Brassicaceae species are endemic to the region. Aethionema (∼61 species) is the sister lineage to the core Brassicaceae and occurs mainly in the Irano-Turanian region. The evolutionary important position of Aethionema makes it an ideal reference for broader comparative genetics and genomics. To understand the evolution of Aethionema, and for a broader understanding of crucifer evolution, a time-calibrated phylogenetic tree and biogeographical history of the genus is needed. METHODS: Seventy-six plastome coding regions and nuclear rDNA genes, mainly from herbarium material, covering 75% of all Aethionema species, were used to resolve a time-calibrated Aethionema phylogeny. The different clades were characterized based on four morphological characters. The ancestral area of Aethionema was estimated with historical biogeographical analyses. KEY RESULTS: Three well-supported major clades within Aethionema were resolved. The ancestral area reconstruction and divergence-time estimates are consistent with major dispersal events during the Pliocene from the Anatolian Diagonal. CONCLUSIONS: We find that most Aethionema lineages originated along the Anatolian Diagonal, a floristic bridge connecting the east to the west, during the Pliocene. The dispersal of Aethionema correlates with the local geological events, such as the uplift of the Anatolian and Iranian plateaus and the formation of the major mountain ranges of the Irano-Turanian region. Knowing the paleo-ecological context for the evolution of Aethionema, in addition to the other lineages of Brassicaceae, facilitates our broader understanding for trait evolution and species diversification across the Brassicaceae.

11.
Mol Phylogenet Evol ; 82 Pt A: 43-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25451804

RESUMO

Tribe Eudemeae comprises a morphologically heterogeneous group of genera distributed along the Andes of South America from Colombia southward into southern Chile and Argentina. The tribe currently includes seven genera: Aschersoniodoxa, Brayopsis, Dactylocardamum, Delpinophytum, Eudema, Onuris, and Xerodraba, and exhibits a wide morphological diversification in growth habit, inflorescences, and fruits. However, little is known about the phylogenetic relationships and evolution of the tribe. We present here a molecular phylogeny of representative sampling of all genera, utilizing sequence data from the nuclear ribosomal ITS region and chloroplast regions trnL-F, trnH-psbA, and rps16. Additionally, climatic niches of the tribe and its main lineages, along with the evolution of diagnostic morphological characters, were studied. All analyses confirmed the monophyly of Eudemeae, with the exception of Delpinophytum that was included with genera of the lineage I of Brassicaceae. Eudemeae is divided into two main lineages differentiated by their geographical distribution and climatic niche: the primarily north-central Andean lineage included Aschersoniodoxa, Brayopsis, Dactylocardamum, and Eudema, and the Patagonian and southern Andean lineage included Onuris and Xerodraba. Finally, ancestral-state reconstructions in the tribe generally reveal multiple and independent gains or losses of diagnostic morphological characters, such as growth form, inflorescence reduction, and fruit type. Relevant taxonomic implications stemming from the results are also discussed.


Assuntos
Evolução Biológica , Brassicaceae/classificação , Filogenia , Teorema de Bayes , Brassicaceae/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Funções Verossimilhança , Análise de Sequência de DNA , América do Sul
12.
Plant Cell Physiol ; 55(1): e3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259684

RESUMO

The Brassicaceae family (mustards or crucifers) includes Arabidopsis thaliana as one of the most important model species in plant biology and a number of important crop plants such as the various Brassica species (e.g. cabbage, canola and mustard). Moreover, the family comprises an increasing number of species that serve as study systems in many fields of plant science and evolutionary research. However, the systematics and taxonomy of the family are very complex and access to scientifically valuable and reliable information linked to species and genus names and its interpretation are often difficult. BrassiBase is a continuously developing and growing knowledge database (http://brassibase.cos.uni-heidelberg.de) that aims at providing direct access to many different types of information ranging from taxonomy and systematics to phylo- and cytogenetics. Providing critically revised key information, the database intends to optimize comparative evolutionary research in this family and supports the introduction of the Brassicaceae as the model family for evolutionary biology and plant sciences. Some features that should help to accomplish these goals within a comprehensive taxonomic framework have now been implemented in the new version 1.1.9. A 'Phylogenetic Placement Tool' should help to identify critical accessions and germplasm and provide a first visualization of phylogenetic relationships. The 'Cytogenetics Tool' provides in-depth information on genome sizes, chromosome numbers and polyploidy, and sets this information into a Brassicaceae-wide context.


Assuntos
Evolução Biológica , Brassicaceae/genética , Bases de Dados Genéticas , Análise Citogenética , Filogenia , Interface Usuário-Computador
13.
PhytoKeys ; 220: 127-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251613

RESUMO

Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.

14.
Curr Biol ; 33(19): 4052-4068.e6, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37659415

RESUMO

The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.


Assuntos
Arabidopsis , Brassicaceae , Filogenia , Brassicaceae/genética , Arabidopsis/genética , Biodiversidade
15.
PhytoKeys ; 189: 9-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115879

RESUMO

The new genus and species Pulvinatusiaxuegulaensis (Brassicaceae) are described and illustrated. The species is a cushion plant collected from Xuegu La, Xizang, China. Its vegetative parts are most similar to those of Arenariabryophylla (Caryophyllaceae) co-occurring in the same region, while its leaves and fruits closely resemble those of Xerodrabapatagonica (Brassicaceae) from Patagonian Argentina and Chile. Family-level phylogenetic analyses based on both nuclear ITS and plastome revealed that it is a member of the tribe Crucihimalayeae, but the infra-/intergeneric relationships within the tribe are yet to be resolved.

17.
Mol Biol Evol ; 27(1): 55-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19744998

RESUMO

Brassicaceae is an important family at both the agronomic and scientific level. The family not only includes several model species, but it is also becoming an evolutionary model at the family level. However, resolving the phylogenetic relationships within the family has been problematic, and a large-scale molecular phylogeny in terms of generic sampling and number of genes is still lacking. In particular, the deeper relationships within the family, for example between the three major recognized lineages, prove particularly hard to resolve. Using a slow-evolving mitochondrial marker (nad4 intron 1), we reconstructed a comprehensive phylogeny in generic representation for the family. In addition, and because resolution was very low in previous single marker phylogenies, we adopted a supermatrix approach by concatenating all checked and reliable sequences available on GenBank as well as new sequences for a total 207 currently recognized genera and eight molecular markers representing a comprehensive coverage of all three genomes. The supermatrix was dated under an uncorrelated relaxed molecular clock using a direct fossil calibration approach. Finally, a lineage-through-time-plot and rates of diversification for the family were generated. The resulting tree, the largest in number of genera and markers sampled to date and covering the whole family in a representative way, provides important insights into the evolution of the family on a broad scale. The backbone of the tree remained largely unresolved and is interpreted as the consequence of early rapid radiation within the family. The age of the family was inferred to be 37.6 (24.2-49.4) Ma, which largely agrees with previous studies. The ages of all major lineages and tribes are also reported. Analysis of diversification suggests that Brassicaceae underwent a rapid period of diversification, after the split with the early diverging tribe Aethionemeae. Given the dates found here, the family appears to have originated under a warm and humid climate approximately 37 Ma. We suggest that the rapid radiation detected was caused by a global cooling during the Oligocene coupled with a genome duplication event. This duplication could have allowed the family to rapidly adapt to the changing climate.


Assuntos
Brassicaceae/genética , Evolução Molecular , Filogenia , Teorema de Bayes , Complexo I de Transporte de Elétrons/genética , Fósseis , Variação Genética , Proteínas de Plantas/genética
18.
PhytoKeys ; 178: 179-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163300

RESUMO

Smelowskia sunhangii, from Qinghai and Tibet (China), is described and illustrated. Morphological and molecular data indicate that S. sunhangii is closely related to Smelowskia tibetica, from which it is easily distinguished by the densely hirsute (vs. glabrous or sparsely pubescent), elliptic to ovate-lanceolate (vs. suborbicular, oblong, or lanceolate) fruits with undulate (vs. straight) margins. A re-evaluation of the widely distributed S. tibetica and related taxa is also provided.

19.
Front Plant Sci ; 11: 607893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510751

RESUMO

The unigeneric tribe Heliophileae encompassing more than 100 Heliophila species is morphologically the most diverse Brassicaceae lineage. The tribe is endemic to southern Africa, confined chiefly to the southwestern South Africa, home of two biodiversity hotspots (Cape Floristic Region and Succulent Karoo). The monospecific Chamira (C. circaeoides), the only crucifer species with persistent cotyledons, is traditionally retrieved as the closest relative of Heliophileae. Our transcriptome analysis revealed a whole-genome duplication (WGD) ∼26.15-29.20 million years ago, presumably preceding the Chamira/Heliophila split. The WGD was then followed by genome-wide diploidization, species radiations, and cladogenesis in Heliophila. The expanded phylogeny based on nuclear ribosomal DNA internal transcribed spacer (ITS) uncovered four major infrageneric clades (A-D) in Heliophila and corroborated the sister relationship between Chamira and Heliophila. Herein, we analyzed how the diploidization process impacted the evolution of repetitive sequences through low-coverage whole-genome sequencing of 15 Heliophila species, representing the four clades, and Chamira. Despite the firmly established infrageneric cladogenesis and different ecological life histories (four perennials vs. 11 annual species), repeatome analysis showed overall comparable evolution of genome sizes (288-484 Mb) and repeat content (25.04-38.90%) across Heliophila species and clades. Among Heliophila species, long terminal repeat (LTR) retrotransposons were the predominant components of the analyzed genomes (11.51-22.42%), whereas tandem repeats had lower abundances (1.03-12.10%). In Chamira, the tandem repeat content (17.92%, 16 diverse tandem repeats) equals the abundance of LTR retrotransposons (16.69%). Among the 108 tandem repeats identified in Heliophila, only 16 repeats were found to be shared among two or more species; no tandem repeats were shared by Chamira and Heliophila genomes. Six "relic" tandem repeats were shared between any two different Heliophila clades by a common descent. Four and six clade-specific repeats shared among clade A and C species, respectively, support the monophyly of these two clades. Three repeats shared by all clade A species corroborate the recent diversification of this clade revealed by plastome-based molecular dating. Phylogenetic analysis based on repeat sequence similarities separated the Heliophila species to three clades [A, C, and (B+D)], mirroring the post-polyploid cladogenesis in Heliophila inferred from rDNA ITS and plastome sequences.

20.
PhytoKeys ; (115): 51-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30692865

RESUMO

Camelinaneglecta is described as a new diploid species and its relationship to the other diploids of the genus and to the somewhat superficially similar tetraploid C.rumelica and hexaploid C.microcarpa, are discussed. SEM of seed and stem trichomes of the new species are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA