Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 239(Pt 1): 117354, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821071

RESUMO

The impact of air pollution in Chennai metropolitan city, a southern Indian coastal city was examined to predict the Air Quality Index (AQI). Regular monitoring and prediction of the Air Quality Index (AQI) are critical for combating air pollution. The current study created machine learning models such as XGBoost, Random Forest, BaggingRegressor, and LGBMRegressor for the prediction of the AQI using the historical data available from 2017 to 2022. According to historical data, the AQI is highest in January, with a mean value of 104.6 g/gm, and the lowest in August, with a mean AQI value of 63.87 g/gm. Particulate matter, gaseous pollutants, and meteorological parameters were used to predict AQI, and the heat map generated showed that of all the parameters, PM2.5 has the greatest impact on AQI, with a value of 0.91. The log transformation method is used to normalize datasets and determine skewness and kurtosis. The XGBoost model demonstrated strong performance, achieving an R2 (correlation coefficient) of 0.9935, a mean absolute error (MAE) of 0.02, a mean square error (MSE) of 0.001, and a root mean square error (RMSE) of 0.04. In comparison, the LightGBM model's prediction was less effective, as it attained an R2 of 0.9748. According to the study, the AQI in Chennai has been increasing over the last two years, and if the same conditions persist, the city's air pollution will worsen in the future. Furthermore, accurate future air quality level predictions can be made using historical data and advanced machine learning algorithms.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mudança Climática , Índia , Aprendizado de Máquina
2.
ACS Omega ; 9(23): 25073-25083, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882116

RESUMO

Four Pd(II) complexes, (dpk)PdCl2 (complex-1), and (dpk)Pd(OAc)2 (complex-2) have been prepared using di(2-pyridyl) ketone as the chelate ligand (dpk). The (dpk·EtOH)PdCl2 (complex-3) and (dpk·EtOH)Pd(OAc)2 (complex-4) were synthesized by selectively introducing complex-1 and complex-2 to an EtOH in situ nucleophilic addition reaction on the O=C of the dpk ligand, respectively. All complexes were characterized using CHN-EA, UV-vis, FT-IR, FAB-MS, EDX, TGA, and NMR physicochemical tools. The XRD-crystallography technique was employed to ascertain the structure of complex-3. The analysis revealed a monoclinic/P21/c crystal system characterized by a square planar structure oriented in the cis direction around the Pd center. Several C-H···Cl and O-H···O H-bonds constructing 2D-S12 and S7 synthons were confirmed via XRD/HSA interactions. The influence of EtOH addition to the O=C group of dpk in (dpk)PdCl2 was documented by using UV-vis/FT-IR spectra and TGA analysis. As catalysts, all complexes have demonstrated a notable catalytic function in the Heck reaction, resulting in a high yield under gentle conditions using iodobenzene and methyl acrylate as model reactions. Moreover, the complex-1 and complex-3 docking activity was evaluated against 1BNA-DNA.

3.
ACS Omega ; 9(23): 25395-25409, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882066

RESUMO

A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 µg/mL against S. aureus and 20 µg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.

4.
Nanomicro Lett ; 16(1): 138, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421464

RESUMO

Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.

5.
ACS Omega ; 9(12): 13746-13763, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38560005

RESUMO

The study aims to synthesize two green pyrazole compounds, N-((1H-pyrazol-1-yl)methyl)-4-nitroaniline (L4) and ethyl 5-methyl-1-(((4-nitrophenyl)amino)methyl)-1H-pyrazole-3-carboxylate (L6), and test their action as corrosion inhibitors for carbon steel (CS) in a 1 M HCl solution. Both chemical and electrochemical methods, namely, gravimetric measurements (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS), were used to assess the efficiency of the investigated molecules. DFT calculations at B3LYP/6-31++G (d, p) and molecular dynamics simulation were used to carry out quantum chemical calculations in order to link their electronic characteristics with the findings of experiments. The organic products exhibited good anticorrosion ability, with maximum inhibition efficiencies (IE %) of 91.8 and 90.8% for 10-3 M L6 and L4, respectively. In accordance with PDP outcomes, L6 and L4 inhibitors act as mixed-type inhibitors. Assessment of the temperature influence evinces that both L4 and L6 are chemisorbed on CS. The adsorption of L4 and L6 on CS appears to follow the Langmuir isotherm. Scanning electron microscopy and UV-visible disclose the constitution of a barrier layer, limiting the accessibility of corrosive species to the CS surface. Theoretical studies were performed to support the results derived from experimental techniques (WL, PDP, and EIS).

6.
Sci Rep ; 13(1): 3199, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823294

RESUMO

In this study, four new Mn(II), Fe(III), and Cr(III) complexes with two Schiff base ligands namely, 4-bromo-2-[(E)-{[4-(2-hydroxyethyl)phenyl]imino}methyl]phenol (HL1) and 2-[(E)-{[4-(2-hydroxyethyl)phenyl]imino}methyl]-4-methoxy phenol (HL2) have been synthesized and characterized. Different analytical and spectral methods have been used to characterize the ligands and their complexes. General formulas of [M(L)Cl2(H2O)2] for FeL1, CrL1 and CrL2, and [M(L)Cl(H2O)3] for MnL2 were proposed. HOMO and LUMO energies, as well as the electrical characteristics, have been calculated using DFT/B3LYP calculations with Gaussian 09 program. The optimized lowest energy configurations of the complexes are proven. The disc diffusion technique was used to test the pharmacological activities' antibacterial efficacy against diverse bacterial and fungus species. The MTT technique was used to assess the in vitro cytotoxicity of the ligands and their metal complexes on the Hep-G2 human liver carcinoma cell line and the MCF-7 human breast cancer cell line. All compounds displayed better activity compared to the free ligands. MnL2 complex showed predominant activity when compared to the other complexes with an IC50 value of 2.6 ± 0.11 µg/ml against Hep-G2, and against MCF-7 the IC50 value was 3.0 ± 0.2 µg/ml which is less than the standard drug cisplatin (4.0 µg/ml). UV-vis electronic spectrum and gel electrophoresis techniques have been used to investigate the compounds' affinity to bind and cleavage CT-DNA. The interaction's binding constants, or Kb, have been identified, and it was discovered that the new complexes' binding affinities are in the order of FeL1 > MnL2 > CrL2 > CrL1, and the binding mechanism has been suggested. To assess the kind of binding and binding affinity of the investigated drugs with human DNA, a molecular docking study was carried out (PDB:1bna). The acquired results supported the intercalation binding mechanism proposed in the experimental part and revealed that complexes may be inserted into the DNA molecule to stop DNA replication. According to ADMET data, the synthesized compounds have a high bioavailability profile and their physicochemical and pharmacological features remained within Lipinski's RO5 predicted limitations.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Humanos , Bases de Schiff/farmacologia , Bases de Schiff/química , Compostos Férricos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , DNA/metabolismo , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073459

RESUMO

In this study, a platinum(II) complex ([Pt(H2L)(PPh3)] complex) containing a thiocarbohydrazone as the ligand was tested as an anti-proliferative agent against ovarian adenocarcinoma (Caov-3) and human colorectal adenocarcinoma (HT-29) through MTT assays. Apoptotic markers were tested by the AO/PI double staining assay and DNA fragmentation test. Flow cytometry was conducted to measure cell cycle distribution, while the p53 and caspase-8 pathways were tested via immunofluorescence assay. Results demonstrated that the cytotoxic effect of the Pt(II)-thiocarbohydrazone complexes against Caov-3 and HT-29 cells was highly significant, and this effect triggered the activation of the p53 and caspase-8 pathways. Besides, apoptosis stimulated by the Pt(II)-thiocarbohydrazone complex was associated with cell cycle arrest at the G0/G1 phase. These findings suggest that the target complex inhibited the proliferation of Caov-3 and HT-29 cells, resulting in the arrest of the cell cycle and induction of apoptosis via the stimulation of the p53 and caspase-8 pathways. The present data suggests that the Pt(II)-thiocarbohydrazone complex could also be a promising chemotherapeutic agent for other types of cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA