Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38398580

RESUMO

A composite of chitosan-supported ZnO nanoparticles (ZnO/CS) was green-synthesized via an easy and cost-effective method using Chicory (Cichorium intybus) plant extract. The synthesis was confirmed using uv-vis spectrometry at a λmax of 380 nm, and the surface of the material was characterized via FT-IR spectroscopy, and finally via SEM, which confirmed the distribution of ZnO nanoparticles on the surface of chitosan biopolymer (CS). The synthesized material was applied in the adsorptive removal of residues of the pyridoxine hydrochloride (vitamin B6) pharmaceutical drug from aqueous media using the batch technique. The material's removal capacity was studied through several adjustable parameters including pH, contact time, the dose of the adsorbent, and the capacity for drug adsorption under the optimal conditions. Langmuir and Freundlich isotherms were applied to describe the adsorption process. The removal was found to obey the Freundlich model, which refers to a chemisorption process. Different kinetic models were also studied for the removal process and showed that the pseudo-second-order model was more fitted, which indicates that the removal was a chemisorption process. Thermodynamic studies were also carried out. The maximum removal of vitamin B6 by the nano-ZnO/CS composite was found to be 75% at optimal conditions. The results were compared to other reported adsorbents. Reusability tests showed that the nano-ZnO/CS composite can be efficiently reused up to seven times for the removal of PDX drugs from aqueous media.


Assuntos
Quitosana , Poluentes Químicos da Água , Óxido de Zinco , Quitosana/química , Piridoxina , Vitamina B 6 , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
2.
Molecules ; 19(4): 4524-47, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24727422

RESUMO

The adsorption of tributyltin (TBT), onto three mesoporous silica adsorbents functionalized with calix[4]arene, p-tert-butylcalix[4]arene and p-sulfonatocalix[4]arene (MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively) has been compared. Batch adsorption experiments were carried out and the effect of contact time, initial TBT concentration, pH and temperature were studied. The Koble-Corrigan isotherm was the most suitable for data fitting. Based on a Langmuir isotherm model, the maximum adsorption capacities were 12.1212, 16.4204 and 7.5757 mg/g for MCM-TDI-C4, MCM-TDI-PC4 and MCM-TDI-C4S, respectively. The larger uptake and stronger affinity of MCM-TDI-PC4 than MCM-TDI-C4 and MCM-TDI-C4S probably results from van der Waals interactions and the pore size distribution of MCM-TDI-PC4. Gibbs free energies for the three adsorption processes of TBT presented a negative value, reflecting that TBT/surface interactions are thermodynamic favorable and spontaneous. The interaction processes were accompanied by an increase of entropy value for MCM-TDI-C4 and MCM-TDI-C4S (43.7192 and 120.7609 J/mol K, respectively) and a decrease for MCM-TDI-PC4 (-37.4704 J/mol K). It is obviously observed that MCM-TDI-PC4 spontaneously adsorbs TBT driven mainly by enthalpy change, while MCM-TDI-C4 and MCM-TDI-C4S do so driven mainly by entropy changes.


Assuntos
Calixarenos/química , Dióxido de Silício/química , Compostos de Trialquitina/química , Adsorção , Concentração de Íons de Hidrogênio , Porosidade , Temperatura , Termodinâmica
3.
Int J Mol Sci ; 13(10): 13726-36, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23202977

RESUMO

This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.


Assuntos
Calixarenos/síntese química , Fenóis/síntese química , Dióxido de Silício/química , Calixarenos/química , Fenóis/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA