Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 88(2): 14, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180543

RESUMO

This study presents a new framework for obtaining personalized optimal treatment strategies targeting aberrant signaling pathways in esophageal cancer, such as the epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signaling pathways. A new pharmacokinetic model is developed taking into account specific heterogeneities of these signaling mechanisms. The optimal therapies are designed to be obtained using a three step process. First, a finite-dimensional constrained optimization problem is solved to obtain the parameters of the pharmacokinetic model, using discrete patient data measurements. Next, a sensitivity analysis is carried out to determine which of the parameters are sensitive to the evolution of the variants of EGF receptors and VEGF receptors. Finally, a second optimal control problem is solved based on the sensitivity analysis results, using a modified pharmacokinetic model that incorporates two representative drugs Trastuzumab and Bevacizumab, targeting EGF and VEGF, respectively. Numerical results with the combination of the two drugs demonstrate the efficiency of the proposed framework.


Assuntos
Fator de Crescimento Epidérmico , Neoplasias Esofágicas , Humanos , Fator A de Crescimento do Endotélio Vascular , Transdução de Sinais , Neoplasias Esofágicas/tratamento farmacológico
2.
R Soc Open Sci ; 11(7): 240347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39086820

RESUMO

This work presents a new framework for a competitive evolutionary game between monoclonal antibodies and signalling pathways in oesophageal cancer. The framework is based on a novel dynamical model that takes into account the dynamic progression of signalling pathways, resistance mechanisms and monoclonal antibody therapies. This game involves a scenario in which signalling pathways and monoclonal antibodies are the players competing against each other, where monoclonal antibodies use Brentuximab and Pembrolizumab dosages as strategies to counter the evolutionary resistance strategy implemented by the signalling pathways. Their interactions are described by the dynamical model, which serves as the game's playground. The analysis and computation of two game-theoretic strategies, Stackelberg and Nash equilibria, are conducted within this framework to ascertain the most favourable outcome for the patient. By comparing Stackelberg equilibria with Nash equilibria, numerical experiments show that the Stackelberg equilibria are superior for treating signalling pathways and are critical for the success of monoclonal antibodies in improving oesophageal cancer patient outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA