Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671571

RESUMO

Smart packaging of fresh produce is an emerging technology toward reduction of waste and preservation of consumer health and safety. Smart packaging systems also help to prolong the shelf life of perishable foods during transport and mass storage, which are difficult to regulate otherwise. The use of these ever-progressing technologies in the packaging of fruits has the potential to result in many positive consequences, including improved fruit quality, reduced waste, and associated improved public health. In this review, we examine the role of smart packaging in fruit packaging, current-state-of-the-art, challenges, and prospects. First, we discuss the motivation behind fruit quality monitoring and maintenance, followed by the background on the development process of fruits, factors used in determining fruit quality, and the classification of smart packaging technologies. Then, we discuss conventional freshness sensors for packaged fruits including direct and indirect freshness indicators. After that, we provide examples of possible smart packaging systems and sensors that can be used in monitoring fruits quality, followed by several strategies to mitigate premature fruit decay, and active packaging technologies. Finally, we discuss the prospects of smart packaging application for fruit quality monitoring along with the associated challenges and prospects.

2.
Anal Chem ; 92(7): 5532-5539, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141295

RESUMO

Bisphenol A, an endocrine disrupting compound, is widely used in food and beverage packaging, and it then leaches in food and source water cycles, and thus must be monitored. Here, we report a simple, low-cost and sensitive electrochemical sensor using graphene oxide and ß-cyclodextrin functionalized multiwalled carbon nanotubes for the detection of BPA in water. This sensor electrode system combines the high surface area of graphene oxide and carbon nanotubes, and the superior host-guest interaction capability of ß-cyclodextrin. A diffusion-controlled oxidation reaction involving equal numbers of protons and electrons facilitated the electrochemical sensing of BPA. The sensor showed a two-step linear response from 0.05 to 5 µM and 5-30 µM with a limit of detection of 6 nM. The sensors also exhibited a reproducible and stable response over one month with negligible interference from common inorganic and organic species, and an excellent recovery with real water samples. The proposed electrochemical sensor can be promising for the development of simple low-cost water quality monitoring system for monitoring of BPA in water.


Assuntos
Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Eletroquímica/instrumentação , Grafite/química , Nanotubos de Carbono/química , Fenóis/análise , Fenóis/química , beta-Ciclodextrinas/química , Eletrodos , Modelos Moleculares , Conformação Molecular
3.
ACS Sens ; 5(2): 412-422, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32028771

RESUMO

Rapid, accurate and inexpensive monitoring of water quality parameters is indispensable for continued water safety, especially in resource-limited areas. Most conventional sensing systems either can only monitor one parameter at a time or lack user-friendly on-site monitoring capabilities. A fully integrated electrochemical sensor array is an excellent solution to this barrier. Electrochemical sensing methods involve transduction of water quality parameters where chemical interactions are converted to electrical signals. The challenge remains in designing low-cost, easy-to-use, and highly sensitive sensor array that can continuously monitor major water quality parameters such as pH, free chlorine, temperature along with emerging pharmaceutical contaminants, and heavy metal without the use of expensive laboratory-based techniques and trained personnel. Here, we overcame this challenge through realizing a fully integrated electrochemical sensing system that offers simultaneous monitoring of pH (57.5 mV/pH), free chlorine (186 nA/ppm), and temperature (16.9 mV/°C) and on-demand monitoring of acetaminophen and 17ß-estradiol (<10 nM) and heavy metal (<10 ppb), bridging the technological gap between signal transduction, processing, wireless transmission, and smartphone interfacing. This was achieved by merging nanomaterials and carbon nanotube-based sensors fabricated on microscopic glass slides controlled by a custom-designed readout circuit, a potentiostat, and an Android app. The sensing system can be easily modified and programmed to integrate other sensors, a capability that can be exploited to monitor a range of water quality parameters. We demonstrate the integrated system for monitoring tap, swimming pool, and lake water. This system opens the possibility for a wide range of low-cost and ubiquitous environmental monitoring applications.


Assuntos
Custos e Análise de Custo/métodos , Técnicas Eletroquímicas/economia , Técnicas Eletroquímicas/métodos , Qualidade da Água/normas
4.
Talanta ; 146: 517-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695299

RESUMO

Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment.


Assuntos
Eletroquímica/instrumentação , Paládio/química , Temperatura , Eletrodos , Vidro/química , Concentração de Íons de Hidrogênio , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA