Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 67-79, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372111

RESUMO

Bacillus sp. RTS11, a xylanolytic strain, was isolated from the Algerian desert rocks. Genetic analysis revealed a remarkable 98.69% similarity to Bacillus pumilus. We harnessed optimization techniques, including Plackett-Burman screening and Box-Behnken optimization design, to amplify xylanase production and activity. The outcome of these efforts was an optimized medium that yielded an impressive xylanase production titer of 448.89 U, a threefold increase compared to the non-optimized medium (146 U). The Purification of xylanase was achieved through the three-phase partitioning technique, employing t-butanol and various chromatographic methods. Notably, anion exchange chromatography led to isolating a highly pure enzyme with a molecular weight of 60 kDa. The xylanase exhibited its peak activity at a temperature of 60°C and a pH of 9.0. When applied to pulp pretreatment, 20 U/g of xylanase demonstrated a substantial increase in the release of phenolic and chromophore compounds while reducing sugar content in the pulp. Furthermore, this versatile xylanase shows its ability to efficiently hydrolyze a variety of agro-industrial residues, including wheat bran, corn and grape waste, wheat straw, and sugarcane bagasse. These findings underscore the significant potential of this xylanase enzyme in biobleaching processes and the utilization of agro-industrial waste, opening up exciting avenues for sustainable and environmentally friendly industrial applications.


Assuntos
Bacillus , Saccharum , Bacillus/genética , Celulose , Endo-1,4-beta-Xilanases , Fibras na Dieta , Concentração de Íons de Hidrogênio
2.
Environ Res ; 246: 118027, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159670

RESUMO

The study explores co-gasification of palm oil decanter cake and alum sludge, investigating the correlation between input variables and syngas production. Operating variables, including temperature (700-900 °C), air flow rate (10-30 mL/min), and particle size (0.25-2 mm), were optimized to maximize syngas production using air as the gasification agent in a fixed bed horizontal tube furnace reactor. Response Surface Methodology with the Box-Behnken design was used employed for optimization. Fourier Transformed Infra-Red (FTIR) and Field Emission Scanning Electron Microscopic (FESEM) analyses were used to analyze the char residue. The results showed that temperature and particle size have positive effects, while air flow rate has a negative effect on the syngas yield. The optimal CO + H2 composition of 39.48 vol% was achieved at 900 °C, 10 mL/min air flow rate, and 2 mm particle size. FTIR analysis confirmed the absence of C─Cl bonds and the emergence of Si─O bonds in the optimized char residue, distinguishing it from the raw sample. FESEM analysis revealed a rich porous structure in the optimized char residue, with the presence of calcium carbonate (CaCO3) and aluminosilicates. These findings provide valuable insights for sustainable energy production from biomass wastes.


Assuntos
Compostos de Alúmen , Gases , Esgotos , Gases/química , Óleo de Palmeira , Temperatura , Biomassa
3.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731626

RESUMO

The current study comprehensively investigates the adsorption behavior of chromium (Cr(III)) in wastewater using Algerian kaolinite clay. The structural and textural properties of the kaolinite clay are extensively characterized through a range of analytical methods, including XRD, FTIR, SEM-EDS, XPS, laser granulometry, N2 adsorption isotherm, and TGA-DTA. The point of zero charge and zeta potential are also assessed. Chromium adsorption reached equilibrium within five minutes, achieving a maximum removal rate of 99% at pH 5. Adsorption equilibrium is modeled using the Langmuir, Freundlich, Temkin, Elovich, and Dubinin-Radushkevitch equations, with the Langmuir isotherm accurately describing the adsorption process and yielding a maximum adsorption capacity of 8.422 mg/g for Cr(III). Thermodynamic parameters suggest the spontaneous and endothermic nature of Cr(III) sorption, with an activation energy of 26.665 kJ/mol, indicating the importance of diffusion in the sorption process. Furthermore, advanced DFT computations, including COSMO-RS, molecular orbitals, IGM, RDG, and QTAIM analyses, are conducted to elucidate the nature of adsorption, revealing strong binding interactions between Cr(III) ions and the kaolinite surface. The integration of theoretical and experimental data not only enhances the understanding of Cr(III) removal using kaolinite but also demonstrates the effectiveness of this clay adsorbent for wastewater treatment. Furthermore, this study highlights the synergistic application of empirical research and computational modeling in elucidating complex adsorption processes.

4.
Int J Environ Health Res ; : 1-22, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965904

RESUMO

The present investigation examines the antimicrobial and antifungal characteristics of natural deep eutectic solvents (NADES) and apple vinegar in relation to a diverse array of bacterial and fungal strains. The clinical bacterial strains, including gram-negative and gram-positive, and the fungal pathogen Candida albicans, were subjected to solid medium diffusion to determine the inhibitory effects of these compounds. The results show that NADES has superior antimicrobial and antifungal action compared to apple vinegar. The observed inhibitory zones for apple vinegar and NADES varied in length from 16.5 to 24.2 and 16 to 52.5 mm, respectively. The results obtained indicate that no synergy is observed for this mixture (50% AV + 50% NADES). The range of values for bactericidal concentrations (MBC) and minimal inhibitory concentrations (MIC) was 0.0125 to 0.2 and 0.0125 to 0.4 µl/ml, respectively. Antibacterial and antifungal chemicals may be found in apple vinegar and NADES, with NADES offering environmentally safe substitutes for traditional antibiotics. Additional investigation is suggested to refine these compounds for a wide range of bacteria, which could create antimicrobial solutions that are both highly effective and specifically targeted, thereby offering extensive potential in medicine and the environment.

5.
Int J Mol Sci ; 23(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269972

RESUMO

Density functional theory (DFT), time-dependent density functional theory (TDDFT), quantum theory of atoms in molecules (QTAIM), and extended transition state natural orbitals for chemical valence (ETS-NOCV) have all been used to investigate the physicochemical and biological properties of curcumin and three complexes, i.e., Cur-M (M = Ni, Cu, and Mg). Based on DFT calculations, the enolic form (Cur-Enol) is more stable than the anti-diketone form (Cur-Anti diketone) favored for complexation. This enolic form stability was explained by the presence of three intramolecular hydrogen bonds according to the QTAIM analysis. Furthermore, the ETS-NOCV technique revealed that the enolic form had more significant antioxidant activity compared with the anti-diketone form. The calculations from the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) showed that the dimethyl sulfoxide (DMSO) solvent could dissolve all the curcumin tautomers Cur-Enol, Cur-Anti-diketone and Cur-Cu, Cur-Mg, and Cur-Ni complexes in contrast to benzene, acetone, octanol, ethanol, methanol, and water. Furthermore, except for Cur-Mg, which had a relatively low solubility (14 g/L), all complexes were insoluble in water. Cur-Anti-diketone was considerably more soluble than Cur-Enol in the examined solvents.


Assuntos
Curcumina , Curcumina/química , Curcumina/farmacologia , Cetonas , Teoria Quântica , Solubilidade , Solventes/química , Água
6.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056670

RESUMO

The transition metal-based catalysts for the elimination of greenhouse gases via methane reforming using carbon dioxide are directly or indirectly associated with their distinguishing characteristics such as well-dispersed metal nanoparticles, a higher number of reducible species, suitable metal-support interaction, and high specific surface area. This work presents the insight into catalytic performance as well as catalyst stability of CexSr1-xNiO3 (x = 0.6-1) nanocrystalline perovskites for the production of hydrogen via methane reforming using carbon dioxide. Strontium incorporation enhances specific surface area, the number of reducible species, and nickel dispersion. The catalytic performance results show that CeNiO3 demonstrated higher initial CH4 (54.3%) and CO2 (64.8%) conversions, which dropped down to 13.1 and 19.2% (CH4 conversions) and 26.3 and 32.5% (CO2 conversions) for Ce0.8Sr0.2NiO3 and Ce0.6Sr0.4NiO3, respectively. This drop in catalytic conversions post strontium addition is concomitant with strontium carbonate covering nickel active sites. Moreover, from the durability results, it is obvious that CeNiO3 exhibited deactivation, whereas no deactivation was observed for Ce0.8Sr0.2NiO3 and Ce0.6Sr0.4NiO3. Carbon deposition during the reaction is mainly responsible for catalyst deactivation, and this is further established by characterizing spent catalysts.

7.
J Nanosci Nanotechnol ; 14(7): 5342-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758029

RESUMO

This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.

8.
Int J Mol Sci ; 15(11): 19924-37, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25365179

RESUMO

A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.


Assuntos
Ácido Láctico/química , Óleo de Semente do Linho/química , Nanocompostos/química , Nanotubos de Carbono/química , Plastificantes/química , Polímeros/química , Varredura Diferencial de Calorimetria , Condutividade Elétrica , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Poliésteres , Resistência à Tração , Termogravimetria
9.
J Biomol Struct Dyn ; 42(3): 1404-1416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37066614

RESUMO

The misuse and overuse of antibiotics have resulted in antibiotic resistance. However, there are alternative approaches that could either substitute antibiotics or enhance their effectiveness without harmful side effects. One such approach is the use of terpene-rich essential oils. In this study, we aimed to demonstrate the antibacterial activity of the main components of three plant essential oils, namely Anthemis punctata, Anthemis pedunculata and Daucus crinitus. Specifically, we targeted bacterial tyrosyl-tRNA synthetase, an enzyme that plays a critical role in bacterial protein synthesis. To investigate how the phytocompounds interact with the enzyme's active sites, we employed a molecular docking study using Autodock Software Tools 1.5.7. Our findings revealed that all 28 phytocompounds bound to the enzyme's active sites with binding energies ranging from -6.96 to -4.03 kcal/mol. These results suggest that terpene-rich essential oils could be a potential source of novel antimicrobial agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Óleos Voláteis , Tirosina-tRNA Ligase , Tirosina-tRNA Ligase/metabolismo , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Terpenos/farmacologia
10.
RSC Adv ; 14(11): 7786-7796, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38444971

RESUMO

In this paper, we have design, synthesized and fully characterized a new meso-fluorescein substituted one-walled calix[4]pyrrole (C4P7), obtained from simple and easily available starting materials such as fluorescein, 4-hydroxyacetophenone and pyrrole. The anion sensing studies reveal that the C4P7 system displays selective and sensitive naked-eye sensing towards fluoride, phosphate, and acetate anions with the limit of detection of 4.27 mg L-1, 6.4 mg L-1, and 5.94 mg L-1, respectively. Moreover, the C4P7 receptor displays good results of binding (host-guest, 1 : 1) towards a variety of anions. The 1 : 1 binding stoichiometry was further confirmed by means of Job's plots. TD-DFT calculations showed that the HOMO-LUMO gap decreases in all the complexes (C4P7@anions) in comparison to the free C4P7 system. The authors are of the opinion that this work may provide a good platform to explore calix[4]pyrrole chemistry in the arena of recognition/sensing of biologically significant analytes in future studies.

11.
ACS Omega ; 9(8): 9076-9089, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434904

RESUMO

A theoretical investigation was conducted using DFT/PW91/TZP/DMSO calculations on a complete set of exhaustive lists of 18 compounds resulting from the complexation of trans-2,4,3',5'-tetrahydroxystilbene (T-OXY) and cis-2,4,1',3'-tetrahydroxystilbene (C-OXY) with copper metal cations (Cu+ and Cu2+). The ligand-binding sites are the critical points of Quantum Theory of Atoms in Molecules (QTAIM) analysis on neutral and deprotonated ligands. Various mechanisms, including hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), single electron transfer followed by proton transfer (SET-PT), and bond dissociation energy (BDE(E0)) calculations, were employed to quantify the antioxidant activity. The BDE(E0) mechanism emerged as the most suitable approach for such analyses to evaluate the departure of hydrogen atoms since the results show the HAT mechanism is the most likely occurring. Particularly intriguing were the anionic Cu+ complexes with ligands adopting trans configurations and deprotonated conformations, displaying superior antioxidant activity compared to their counterparts. Remarkably, a single ligand within the Cu+ complex exhibited exceptional antioxidant prowess, yielding a BDE(E0) value of 91.47 kcal/mol. Furthermore, a complex involving two deprotonated ligands demonstrated antioxidant activity of 31.12 kcal/mol, signifying its potential as a potent antiradical agent, surpassing T-OXY by a factor of 3.91 and even surpassing the antioxidant efficiency of Vitamin C.

12.
Heliyon ; 10(7): e29143, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623241

RESUMO

The human body is affected by ultraviolet radiation because it can penetrate and harm bodily cells. Although skin cancer and early aging are consequences of prolonged exposure to ultraviolet (UV) rays, sun rays signify immediate excessive exposure. In this context, some structural, optical, electrical, and mechanical properties of the beryllium-based cubic fluoro-perovskite RBeF3 (R[bond, double bond]K and Li) compounds are examined through the use of density functional theory (DFT) within generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) approximations (GGA-PBE). The compounds KBeF3 and LiBeF3 have space group 221-pm3m, and their lattice constants and volumes are (3.765, 3.566) Å and (53.380, 45.379) Å3, respectively, based on their structural properties. Computed results indicate that the compounds' bandgaps are 7.35 eV and 7.12 eV, respectively, with an indirect nature for KBeF3 and LiBeF3. The properties of the band structure indicate that both compounds are insulators. The bonding properties of these compounds, RBeF3, are a combination of covalent and ionic. Optical properties of the compounds are examined which reflect the light-matter interaction like reflectivity, conductivity, and absorption. These materials were likely very hard but brittle, based on a higher bulk modulus B from elastic features, the B/G ratio, Pugh's ratio, and Vickers hardness. The compound RBeF3, as determined by the findings, is used as a UV protection and reflection layer for car and room windows.

13.
Fitoterapia ; 177: 106055, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838822

RESUMO

This study evaluates the antibacterial effectiveness of Origanum vulgare hydroethanolic extract, both independently and in combination with antibiotics, against Escherichia coli strains associated with avian colibacillosis-a significant concern for the poultry industry due to the rise of antibiotic-resistant E. coli. The urgent demand for new treatments is addressed by analyzing the extract's phytochemical makeup via High-Performance Liquid Chromatography (HPLC), which identified sixteen phenolic compounds. Antibacterial activity was determined through agar diffusion and the measurement of minimum inhibitory and bactericidal concentrations (MIC and MBC), showing moderate efficacy (MIC: 3.9 to 7.8 mg/mL, MBC: 31.2 to 62.4 mg/mL). Combining the extract with antibiotics like ampicillin and tetracycline amplified antibacterial activity, indicating a synergistic effect and highlighting the importance of combinatory treatments against resistant strains. Further analysis revealed the extract's mechanisms of action include disrupting bacterial cell membrane integrity and inhibiting ATPase/H+ proton pumps, essential for bacterial survival. Moreover, the extract effectively inhibited and eradicated biofilms, crucial for preventing bacterial colonization. Regarding cytotoxicity, the extract showed no hemolytic effect at 1 to 9 mg/mL concentrations. These results suggest Origanum vulgare extract, particularly when used with antibiotics, offers a promising strategy for managing avian colibacillosis, providing both direct antibacterial benefits and moderating antibiotic resistance, thus potentially reducing the economic impact of the disease on the poultry industry.

14.
RSC Adv ; 14(18): 12533-12555, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38689800

RESUMO

This study investigates the corrosion inhibition potential of 3,4-dimethoxy phenyl thiosemicarbazone (DMPTS) for copper in 1 M hydrochloric acid (HCl) solutions, aiming to disclose the mechanism behind its protective action. Through an integrative methodology encompassing electrochemical analyses-such as weight loss measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS)-we quantitatively evaluate the corrosion protection efficacy of DMPTS. It was determined that the optimal concentration of DMPTS markedly boosts the corrosion resistance of copper, achieving an impressive inhibition efficiency of up to 89% at 400 ppm. The formation of a protective layer on the copper surface, a critical aspect of DMPTS's inhibitory action, was characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). These techniques provided empirical evidence of surface morphology modifications and roughness changes, affirming the formation of a protective barrier against corrosion. A significant advancement in our study was the application of Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy, which identified chemical adsorption as the definitive mechanism of corrosion inhibition by DMPTS. The ATR-FTIR results explicitly demonstrated the specific interactions between DMPTS molecules and the copper surface, indicative of a robust protective adsorbed layer formation. This mechanistic insight, crucial to understanding the inhibitory process, aligns with the protective efficacy observed in electrochemical and surface analyses. Theoretical support, provided by the Quantum Theory of Atoms in Molecules (QTAIM) and quantum chemical computations, further validated the strong molecular interaction between DMPTS and copper, corroborating the experimental findings. Collectively, this research not only confirms the superior corrosion inhibition performance of DMPTS in an acidic setting but also elucidates the chemical adsorption mechanism as the foundation of its action, offering valuable insights for the development of effective corrosion inhibitors in industrial applications.

15.
Polymers (Basel) ; 15(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006114

RESUMO

Metal corrosion poses a substantial economic challenge in a technologically advanced world. In this study, novel environmentally friendly anticorrosive graphene oxide (GO)-doped organic-inorganic hybrid polyurethane (LFAOIH@GO-PU) nanocomposite coatings were developed from Leucaena leucocephala oil (LLO). The formulation was produced by the amidation reaction of LLO to form diol fatty amide followed by the reaction of tetraethoxysilane (TEOS) and a dispersion of GOx (X = 0.25, 0.50, and 0.75 wt%) along with the reaction of isophorane diisocyanate (IPDI) (25-40 wt%) to form LFAOIH@GOx-PU35 nanocomposites. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR); 1H, 13C, and 29Si nuclear magnetic resonance; and X-ray photoelectron spectroscopy. A detailed examination of LFAOIH@GO0.5-PU35 morphology was conducted using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. These studies revealed distinctive surface roughness features along with a contact angle of around 88 G.U preserving their structural integrity at temperatures of up to 235 °C with minimal loading of GO. Additionally, improved mechanical properties, including scratch hardness (3 kg), pencil hardness (5H), impact resistance, bending, gloss value (79), crosshatch adhesion, and thickness were evaluated with the dispersion of GO. Electrochemical corrosion studies, involving Nyquist, Bode, and Tafel plots, provided clear evidence of the outstanding anticorrosion performance of the coatings.

16.
Polymers (Basel) ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447466

RESUMO

In the present work, different methanesulfonate-based protic ionic liquids (PILs) were synthesized and their structural characterization was performed using FTIR, 1H, and 13C NMR spectroscopy. Their thermal behavior and stability were studied using DSC and TGA, respectively, and EIS was used to study the ionic conductivity of these PILs. The PIL, which was diethanolammonium-methanesulfonate-based due to its compatibility with polybenzimidazole (PBI) to form composite membranes, was used to prepare proton-conducting polymer electrolyte membranes (PEMs) for prospective high-temperature fuel cell application. The prepared PEMs were further characterized using FTIR, DSC, TGA, SEM, and EIS. The FTIR results indicated good interaction among the PEM components and the DSC results suggested good miscibility and a plasticizing effect of the incorporated PIL in the PBI polymer matrix. All the PEMs showed good thermal stability and good proton conductivity for prospective high-temperature fuel cell application.

17.
RSC Adv ; 13(44): 30937-30950, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37876651

RESUMO

Molecular hydrogen (H2) adsorption plays a crucial role in numerous applications, including hydrogen storage and purification processes. Understanding the interaction of H2 with porous materials is essential for designing efficient adsorption systems. In this study, we investigate H2 adsorption on CHA-zeolite using a combination of density functional theory (DFT) and force field-based molecular dynamics (MD) simulations. Firstly, we employ DFT calculations to explore the energetic properties and adsorption sites of H2 on the CHA-zeolite framework. The electronic structure and binding energies of H2 in various adsorption configurations are analyzed, providing valuable insights into the nature of the adsorption process. Subsequently, force field methods are employed to perform extensive MD simulations, allowing us to study the dynamic behavior of H2 molecules adsorbed on the CHA-zeolite surface. The trajectory analysis provides information on the diffusion mechanisms and mobility of H2 within the porous structure, shedding light on the transport properties of the adsorbed gas. Furthermore, the combination of DFT and MD results enables us to validate and refine the force field parameters used in simulations, improving the accuracy of the model, and enhancing our understanding of the H2-CHA interactions. Our comprehensive investigation into molecular hydrogen adsorption on CHA-zeolite using density functional theory and molecular dynamics simulations yields valuable insights into the fundamental aspects of the adsorption process. These findings contribute to the development of advanced hydrogen storage and separation technologies, paving the way for efficient and sustainable energy applications.

18.
ACS Omega ; 8(42): 39288-39302, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901567

RESUMO

A series of benzotrithiophene-based compounds (DCTM1-DCTM6) having D1-π1-D2-π2-A configuration were designed using a reference molecule (DCTMR) via incorporating pyrrole rings (n = 1-5) as the π-spacer (π2). Quantum chemical calculations were performed to determine the impact of the pyrrole ring on the nonlinear optical (NLO) behavior of the above-mentioned chromophores. The optoelectronic properties of the compounds were determined at the MW1PW91/6-311G(d,p) functional. Among all of the derivatives, DCTM5 exhibited the least highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band gap (Eg) 0.968 eV with a high softness of 0.562 eV-1, and hence possessed the highest polarizability. Interestingly, transition density matrix (TDM) findings demonstrated that DCTM5 with an effective diagonal charge transmission proportion at the acceptor group supports the frontier molecular orbital (FMO) results. Additionally, the exciton binding energy values for DCTM1-DCTM6 were found to be less than that for DCTMR and thus, the effective charge transfer was examined in the derivatives. All of the derivatives exhibited effective NLO outcomes with the highest magnitude of linear polarizability ⟨α⟩, and first (ßtot) and second (γtot) hyperpolarizabilities relative to the parent compound. Nevertheless, the highest ßtot and γtot were obtained for DTCM1 and DTCM6, 7.0440 × 10-27 and 22.260 × 10-34 esu, respectively. Hence, through this structural tailoring with a pyrrole spacer, effective NLO materials can be obtained for optoelectronic applications.

19.
ACS Omega ; 8(49): 47224-47238, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107914

RESUMO

Natural and fragrant compounds, essential oils (EOs) extracted from plants through hydrodistillation, are gaining popularity as eco-friendly and sustainable agents to protect metals and alloys from corrosion in acidic environments. This research focused on extracting and characterizing an EO obtained from the Cuminum cyminum (CC) plant native to India. The study aimed to evaluate the inhibitory properties of this EO on mild steel in a 0.5 M HCl solution at different concentrations. Various analytical techniques, including potentiodynamic polarization curves, electrochemical impedance spectroscopy, optical microscopy, infrared spectroscopy, and proton magnetic resonance, were employed to assess the effectiveness of this EO extract. Our findings indicate that the Cuminum cyminum L (CCL) extract effectively reduces the corrosion of mild steel in hydrochloric acid with an inhibition efficiency ranging from 79.69 to 98.76%. The optimal inhibition concentration was 2 g/L of EO, and surface analysis confirmed the formation of a protective layer. Furthermore, our results suggest that the inhibitor binds to the metal surface through a charge-transfer process, creating a protective film. Finally, we utilized theoretical calculations and molecular dynamics simulations to elucidate the inhibition mechanism on both a global and local scale.

20.
Inflammation ; 46(1): 432-452, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227522

RESUMO

The effectiveness of curcumin in preventing and treating collagen-induced inflammatory arthritis (CIA) in rats and oxidative stress in rats was investigated. We investigated curcumin's curative and preventive effects on paw edema, arthritic size, body weight, and radiologic and histological joint abnormalities. It has been shown that curcumin may dramatically lower the risk of developing arthritis. In addition, the number of white blood cells (WBCs) in the body has dropped, which is a strong indication that curcumin has anti-inflammatory characteristics. A follow-up theoretical investigation of curcumin molecular docking on xanthine oxidase (XO) was carried out after the properties of curcumin were determined using the conductor-like screening model for real solvents (COSMO-RS) theory. Because of the interaction between curcumin and the residues on XO named Ile264, Val259, Asn351, and Leu404, XO may be suppressed by this molecule. Curcumin's anti-inflammatory and antioxidant properties may be responsible for the anti-arthritic effects that have been seen on oxidative stress markers and XO. On the other hand, more research is being conducted to understand its function better in the early stages of rheumatoid arthritis (RA). To determine whether or not curcumin interacts with AR targets, a molecular docking study was conducted using MVD software against TNFRSF11A and cathepsin L.


Assuntos
Artrite Experimental , Curcumina , Ratos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Xantina Oxidase/metabolismo , Xantina Oxidase/farmacologia , Xantina Oxidase/uso terapêutico , Simulação de Acoplamento Molecular , Catepsina L/efeitos adversos , Anti-Inflamatórios/farmacologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA