Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Popul Health Metr ; 16(1): 3, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391038

RESUMO

BACKGROUND: There is increasing interest in using verbal autopsy to produce nationally representative population-level estimates of causes of death. However, the burden of processing a large quantity of surveys collected with paper and pencil has been a barrier to scaling up verbal autopsy surveillance. Direct electronic data capture has been used in other large-scale surveys and can be used in verbal autopsy as well, to reduce time and cost of going from collected data to actionable information. METHODS: We collected verbal autopsy interviews using paper and pencil and using electronic tablets at two sites, and measured the cost and time required to process the surveys for analysis. From these cost and time data, we extrapolated costs associated with conducting large-scale surveillance with verbal autopsy. RESULTS: We found that the median time between data collection and data entry for surveys collected on paper and pencil was approximately 3 months. For surveys collected on electronic tablets, this was less than 2 days. For small-scale surveys, we found that the upfront costs of purchasing electronic tablets was the primary cost and resulted in a higher total cost. For large-scale surveys, the costs associated with data entry exceeded the cost of the tablets, so electronic data capture provides both a quicker and cheaper method of data collection. CONCLUSIONS: As countries increase verbal autopsy surveillance, it is important to consider the best way to design sustainable systems for data collection. Electronic data capture has the potential to greatly reduce the time and costs associated with data collection. For long-term, large-scale surveillance required by national vital statistical systems, electronic data capture reduces costs and allows data to be available sooner.


Assuntos
Autopsia/métodos , Causas de Morte , Computadores , Análise Custo-Benefício , Coleta de Dados/métodos , Morte , Vigilância da População/métodos , Autopsia/economia , Bangladesh/epidemiologia , Custos e Análise de Custo , Coleta de Dados/economia , Eletrônica , Humanos , Filipinas/epidemiologia , Inquéritos e Questionários
2.
Lancet ; 386(10010): 2287-323, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26364544

RESUMO

BACKGROUND: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. METHODS: Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk-outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990-2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. FINDINGS: All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8-58·5) of deaths and 41·6% (40·1-43·0) of DALYs. Risks quantified account for 87·9% (86·5-89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. INTERPRETATION: Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Exposição Ambiental/efeitos adversos , Saúde Global/tendências , Doenças Metabólicas/epidemiologia , Doenças Profissionais/epidemiologia , Feminino , Saúde Global/estatística & dados numéricos , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Estado Nutricional , Exposição Ocupacional/efeitos adversos , Medição de Risco/métodos , Fatores de Risco , Saneamento/tendências
3.
Lancet ; 386(10009): 2145-91, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26321261

RESUMO

BACKGROUND: The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age-sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. METHODS: We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. FINDINGS: Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6-6·6), from 65·3 years (65·0-65·6) in 1990 to 71·5 years (71·0-71·9) in 2013, HALE at birth rose by 5·4 years (4·9-5·8), from 56·9 years (54·5-59·1) to 62·3 years (59·7-64·8), total DALYs fell by 3·6% (0·3-7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6-29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non-communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. INTERPRETATION: Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition--in which increasing sociodemographic status brings structured change in disease burden--is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Doença Crônica/epidemiologia , Doenças Transmissíveis/epidemiologia , Saúde Global/estatística & dados numéricos , Transição Epidemiológica , Expectativa de Vida , Ferimentos e Lesões/epidemiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade Prematura , Anos de Vida Ajustados por Qualidade de Vida , Fatores Socioeconômicos
4.
BMC Med ; 13: 302, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670275

RESUMO

BACKGROUND: Verbal autopsy (VA) is recognized as the only feasible alternative to comprehensive medical certification of deaths in settings with no or unreliable vital registration systems. However, a barrier to its use by national registration systems has been the amount of time and cost needed for data collection. Therefore, a short VA instrument (VAI) is needed. In this paper we describe a shortened version of the VAI developed for the Population Health Metrics Research Consortium (PHMRC) Gold Standard Verbal Autopsy Validation Study using a systematic approach. METHODS: We used data from the PHMRC validation study. Using the Tariff 2.0 method, we first established a rank order of individual questions in the PHMRC VAI according to their importance in predicting causes of death. Second, we reduced the size of the instrument by dropping questions in reverse order of their importance. We assessed the predictive performance of the instrument as questions were removed at the individual level by calculating chance-corrected concordance and at the population level with cause-specific mortality fraction (CSMF) accuracy. Finally, the optimum size of the shortened instrument was determined using a first derivative analysis of the decline in performance as the size of the VA instrument decreased for adults, children, and neonates. RESULTS: The full PHMRC VAI had 183, 127, and 149 questions for adult, child, and neonatal deaths, respectively. The shortened instrument developed had 109, 69, and 67 questions, respectively, representing a decrease in the total number of questions of 40-55%. The shortened instrument, with text, showed non-significant declines in CSMF accuracy from the full instrument with text of 0.4%, 0.0%, and 0.6% for the adult, child, and neonatal modules, respectively. CONCLUSIONS: We developed a shortened VAI using a systematic approach, and assessed its performance when administered using hand-held electronic tablets and analyzed using Tariff 2.0. The length of a VA questionnaire was shortened by almost 50% without a significant drop in performance. The shortened VAI developed reduces the burden of time and resources required for data collection and analysis of cause of death data in civil registration systems.


Assuntos
Monitoramento Epidemiológico , Adulto , Causas de Morte , Pré-Escolar , Países em Desenvolvimento , Humanos , Recém-Nascido , Reprodutibilidade dos Testes , Inquéritos e Questionários
5.
BMC Med ; 13: 291, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26644140

RESUMO

BACKGROUND: Reliable data on the distribution of causes of death (COD) in a population are fundamental to good public health practice. In the absence of comprehensive medical certification of deaths, the only feasible way to collect essential mortality data is verbal autopsy (VA). The Tariff Method was developed by the Population Health Metrics Research Consortium (PHMRC) to ascertain COD from VA information. Given its potential for improving information about COD, there is interest in refining the method. We describe the further development of the Tariff Method. METHODS: This study uses data from the PHMRC and the National Health and Medical Research Council (NHMRC) of Australia studies. Gold standard clinical diagnostic criteria for hospital deaths were specified for a target cause list. VAs were collected from families using the PHMRC verbal autopsy instrument including health care experience (HCE). The original Tariff Method (Tariff 1.0) was trained using the validated PHMRC database for which VAs had been collected for deaths with hospital records fulfilling the gold standard criteria (validated VAs). In this study, the performance of Tariff 1.0 was tested using VAs from household surveys (community VAs) collected for the PHMRC and NHMRC studies. We then corrected the model to account for the previous observed biases of the model, and Tariff 2.0 was developed. The performance of Tariff 2.0 was measured at individual and population levels using the validated PHMRC database. RESULTS: For median chance-corrected concordance (CCC) and mean cause-specific mortality fraction (CSMF) accuracy, and for each of three modules with and without HCE, Tariff 2.0 performs significantly better than the Tariff 1.0, especially in children and neonates. Improvement in CSMF accuracy with HCE was 2.5%, 7.4%, and 14.9% for adults, children, and neonates, respectively, and for median CCC with HCE it was 6.0%, 13.5%, and 21.2%, respectively. Similar levels of improvement are seen in analyses without HCE. CONCLUSIONS: Tariff 2.0 addresses the main shortcomings of the application of the Tariff Method to analyze data from VAs in community settings. It provides an estimation of COD from VAs with better performance at the individual and population level than the previous version of this method, and it is publicly available for use.


Assuntos
Autopsia/métodos , Causas de Morte , Feminino , Humanos , Masculino
6.
Front Public Health ; 9: 622379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395351

RESUMO

Background: Coronavirus disease 2019 (COVID-19) has spread globally, and the government of each affected country is publishing the number of deaths every day. This official figure is an underestimate as it excludes anybody who did not die in a hospital, who did not test positive, who had a false result, or those who recovered on their own without a test. Objective: This study aimed to measure the community level excess mortality using health and demographic surveillance in a rural area of Bangladesh. Method: The study was conducted in Matlab, in a rural area of Bangladesh, with a Health and Demographic Surveillance System (HDSS) covering a population of 239,030 individuals living in 54,823 households in 142 villages. We examined the mortality in January-April from 2015 to 2020 and compared the mortality in 2020 with the historical trend of 2015-2019. Between 2015 and 2020, we followed 276,868 people until migration or death, whichever occurred first. We analyzed mortality using crude mortality rate ratio (MRR) and adjusted MRR (aMRR) from a Cox proportional hazard model. Mortality was analyzed according to age, sex, and period. Results: During follow-up, 3,197 people died. The mortality rate per 1,000 person-years increased from 10 in 2019 to 12 in 2020. Excess mortality was observed among the elderly population (aged 65 years and above). The elderly mortality rate per 1,000 person-years increased from 80 in 2019 to 110 in 2020, and the aMRR was 1.40 (95% CI: 1.19-1.64). Although an increasing tendency in mortality was observed between 2015 and 2019, it was statistically insignificant. Conclusions: The study reported a 28% increase in excess deaths among the elderly population during the first months of the pandemic. This all-cause mortality estimation at the community level will urge policymakers, public health professionals, and researchers to further investigate the causes of death and the underlying reasons for excess deaths in the older age-group.


Assuntos
COVID-19 , Pandemias , Idoso , Bangladesh/epidemiologia , Demografia , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA