Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Divers ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780832

RESUMO

Pseudomonas aeruginosa can cause serious nosocomial infections. Targeting the biosynthesis of Lipid A, a major structural domain of lipopolysaccharide (LPS) in P. aeruginosa has emerged as a valuable strategy for developing novel therapeutic agents. The biosynthesis of Lipid A involves the activation of homolog enzymes including LpxA and LpxD. LpxA enzyme facilitates the transfer of R-3-hydroxydecanoic fatty acid to uridine diphosphate N-acetylglucosamine in the first step. While LPxD is accountable in third step, wherein R-3-hydroxydodecanoate is transferred to the 2' amine of UDP-3-O-(3-hydroxydecanoyl) utilizing an ACP donor. The exploration of LpxA and LpxD has been largely neglected, as no specific small-molecule inhibitors have been identified, thus far, except for peptide inhibitors. Here, we report the identification of potential dual inhibitors of the lipid A biosynthesis pathway that target both the LpxA and LpxD enzymes as novel antibiotic agents. Among the virtually screened 32,000 marine bioactive compounds Oscillatoxin A, NCI60_041046, and LTS0192263 exhibited optimal docking interactions with LpxA and LpxD, respectively. MD simulation and MMPBSA data showcased stable interactions between selected marine products and LpxA/LpxD. FMO analysis showed that Oscillatoxin A and NCI60_041046 are the most chemically active molecules. MEP analysis data highlighted the possible electrophilic and nucleophilic distribution zones present in the structure. In addition, these bioactive molecules showed acceptable ADMET profiles. These data confirmed that Oscillatoxin A, NCI60_041046, and LTS0192263 could serve as seeds for the development of potential therapeutics to combat P. aeruginosa infection.

2.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248659

RESUMO

The Marburg virus (MBV), a deadly pathogen, poses a serious threat to world health due to the lack of effective treatments, calling for an immediate search for targeted and efficient treatments. In this study, we focused on compounds originating from marine fungi in order to identify possible inhibitory compounds against the Marburg virus (MBV) VP35-RNA binding domain (VP35-RBD) using a computational approach. We started with a virtual screening procedure using the Lipinski filter as a guide. Based on their docking scores, 42 potential candidates were found. Four of these compounds-CMNPD17596, CMNPD22144, CMNPD25994, and CMNPD17598-as well as myricetin, the control compound, were chosen for re-docking analysis. Re-docking revealed that these particular compounds had a higher affinity for MBV VP35-RBD in comparison to the control. Analyzing the chemical interactions revealed unique binding properties for every compound, identified by a range of Pi-cation interactions and hydrogen bond types. We were able to learn more about the dynamic behaviors and stability of the protein-ligand complexes through a 200-nanosecond molecular dynamics simulation, as demonstrated by the compounds' consistent RMSD and RMSF values. The multidimensional nature of the data was clarified by the application of principal component analysis, which suggested stable conformations in the complexes with little modification. Further insight into the energy profiles and stability states of these complexes was also obtained by an examination of the free energy landscape. Our findings underscore the effectiveness of computational strategies in identifying and analyzing potential inhibitors for MBV VP35-RBD, offering promising paths for further experimental investigations and possible therapeutic development against the MBV.


Assuntos
Doença do Vírus de Marburg , Animais , Motivos de Ligação ao RNA , Fungos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
3.
J Asian Nat Prod Res ; 26(8): 955-992, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38647682

RESUMO

KRAS mutations linked with cancer. Flavonoids were docked against KRAS G12C and G12D receptors. Abyssinone III, alpha naphthoflavone, beta naphthoflavone, abyssinone I, abyssinone II and beta naphthoflavone, genistin, daidzin showed good docking scores against KRAS G12C and G12D receptors, respectively. The MD simulation data revealed that Rg, RMSD, RMSF, and SASA values were within acceptable limits. Alpha and beta naphthoflavone showed good binding energies with KRAS G12C and G12D receptors. DFT and MEP analysis highlighted the nucleophilic and electrophilic zones of best-docked flavonoids. A novel avenue for the control of KRAS G12C and G12D mutations is made possible by flavonoids.


In the present study, we computationally established the role of flavonoids as KRAS G12C and G12D inhibitors.Initially we selected 93 flavonoids and docked against 8AFB (KRAS G12C) and 7RT1 (KRAS G12D) using Sotorasib and MRTX 1133 as standards.A 100 ns MD simulation revealed that the radius of gyration, RMSD, RMSF, and SASA values were within acceptable limits and that there were a greater number of donors and acceptors for hydrogen bonds.In addition to the KRAS G12C 8AFB receptor, the maximum binding energy was shown by alpha Naphthoflavone (−26.471 kJ/mol), and for the KRAS G12D 7RT1 receptor, the maximum binding energy was shown by beta Naphthoflavone (−15.433 kJ/mol).FMO and MEP analysis data highlighted the best-docked flavonoids' potential areas for nucleophilic and electrophilic attacks.ADMET properties have been calculated and provide safe use and low toxicity for both aquatic and non-aquatic species.


Assuntos
Flavonoides , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras) , Flavonoides/química , Flavonoides/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Estrutura Molecular , Humanos , Teoria da Densidade Funcional , Mutação
4.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446713

RESUMO

The RAS gene family is one of the most frequently mutated oncogenes in human cancers. In KRAS, mutations of G12D and G12C are common. Here, 52 iridoids were selected and docked against 8AFB (KRAS G12C receptor) using Sotorasib as the standard. As per the docking interaction data, 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester (dock score: -9.9 kcal/mol), 6'-O-trans-para-coumaroyl geniposidic acid (dock score: -9.6 kcal/mol), 6-O-trans-cinnamoyl-secologanoside (dock score: -9.5 kcal/mol), Loganic acid 6'-O-beta-d-glucoside (dock score: -9.5 kcal/mol), 10-O-succinoylgeniposide (dock score: -9.4), Loganic acid (dock score: -9.4 kcal/mol), and Amphicoside (dock score: -9.2 kcal/mol) showed higher dock scores than standard Sotorasib (dock score: -9.1 kcal/mol). These common amino acid residues between iridoids and complexed ligands confirmed that all the iridoids perfectly docked within the receptor's active site. The 100 ns MD simulation data showed that RMSD, RMSF, radius of gyration, and SASA values were within range, with greater numbers of hydrogen bond donors and acceptors. MM/PBSA analysis showed maximum binding energy values of -7309 kJ/mol for 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester. FMO analysis showed that 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester was the most likely chemically reactive molecule. MEP analysis data highlighted the possible electrophilic and nucleophilic attack regions of the best-docked iridoids. Of all the best-docked iridoids, Loganic acid passed Lipinski, Pfizer, and GSK filters with a similar toxicity profile to Sotorasib. Thus, if we consider these iridoids to be KRAS G12C inhibitors, they will be a boon to mankind.


Assuntos
Genes ras , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Eletricidade Estática , Simulação de Dinâmica Molecular , Iridoides/farmacologia , Iridoides/química , Ésteres
5.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630338

RESUMO

We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.


Assuntos
Fenol , Fenóis , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Antibacterianos/farmacologia
6.
Saudi Pharm J ; 31(6): 1125-1138, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37293382

RESUMO

The incidence of Hepatocellular Carcinoma (HCC) in Saudi Arabia is not surprising given the relatively high prevalence of hepatitis C virus (HCV) infection. Hepatitis C is also common in Saudi Arabia with a prevalence rate of 1% to 3% of the population, which further increases the risk of HCC. The incidence of HCC has been increasing in recent years, with HCV-related HCC accounting for a significant proportion of cases. Traditional medicine has long been a part of Saudi Arabian culture, and many medicinal plants have been used for centuries to treat various ailments, including cancer. Following that, this study combines network pharmacology with bioinformatics approaches to potentially revolutionize HCV-related HCC treatment by identifying effective phytochemicals of indigenous plants of Medina valley. Eight indigenous plants including Rumex vesicarius, Withania somnifera, Rhazya stricta, Heliotropium arbainense, Asphodelus fistulosus, Pulicaria incise, Commicarpus grandiflorus, and Senna alexandrina, were selected for the initial screening of potential drug-like compounds. At first, the information related to active compounds of eight indigenous plants was retrieved from public databases and through literature review which was later combined with differentially expressed genes (DEGs) obtained through microarray datasets. Later, a compound-target genes-disease network was constructed which uncovered that kaempferol, rhazimol, beta-sitosterol, 12-Hydroxy-3-keto-bisnor-4-cholenic acid, 5-O-caffeoylquinic acid, 24-Methyldesmosterol, stigmasterone, fucosterol, and withanolide_J decisively contributed to the cell growth and proliferation by affecting ALB and PTGS2 proteins. Moreover, the molecular docking and Molecular Dynamic (MD) simulation of 20 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. But the findings were not validated in actual patients, so further investigation is needed to confirm the potential use of selected medicinal plants towards HCV-related HC.

7.
Saudi Pharm J ; 31(11): 101802, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37822694

RESUMO

Inflammation is a nonspecific immune response against injury caused by a harmful agent that strives to restore tissue function and homeostasis. Dodonaea angustifolia L.f. (Sapindaceae) is a medium-sized shrub used to treat a variety of diseases in traditional medicine. In the current study, integrated network-pharmacology and molecular docking approaches were used to identify the active constituents, their possible targets, signaling pathways, and anti-inflammatory effects of flavonoids from D.angustifolia. D. angustifolia active ingredients were acquired from the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT), and Traditional Chinese Medicine System Pharmacology (TCMSP) databases. The screening included the ten most prevalent D. angustifolia components, and the SwissTargetPrediction database was utilized to anticipate the targets of these compounds. Anti-inflammatory genes were found using the GeneCards database. The 175 overlapping genes were discovered as prospective D. angustifolia anti-inflammatory targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the overlapped targets were closely related to the major pathogenic processes linked to inflammation, such as response to organonitrogen compound, protein kinase activity, phosphotransferase activity, pI3k-Akt signaling pathway, metabolic pathways, and chemical carcinogenesis. Compound-target-pathway, and protein-protein interaction networks revealed 6-Methoxykaempferol and 5-Hydroxy-7,8 dimethoxyflavone as key compounds, and AKT1, VEGFA, and EGFR as key targets. Furthermore, molecular docking followed by molecular dynamic (MD) simulation of D. angustifolia active ingredients with core proteins fully complemented the binding affinity of these compounds and indicated stable complexes at the docked site. These findings reveal D. angustifolia 's multi-target, multi-compound, and multi-pathway strategies against inflammation. Our study paved the way for further research into the mechanism for developing D. angustifolia -based natural products as alternative therapies for inflammation.

8.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613881

RESUMO

In the current study, the reversed-phased high-pressure liquid chromatography (RP-HPLC) method was proposed for the estimation of lignocaine hydrochloride (LIG), hydrocortisone (HYD) and Ketoprofen (KET) according to International Conference for Harmonization (ICH) Q2 R1 guidelines, in a gel formulation. The chromatographic evaluation was executed using Shimadzu RP-HPLC, equipped with a C8 column and detected using UV at 254 nm wavelength, using acetonitrile and buffer (50:50) as a mobile phase and diluent, at flow rate 1 mL/min and n injection volume of 20 µL. The retention time for LIG, HYD, and KET were 1.54, 2.57, and 5.78 min, correspondingly. The resultant values of analytical recovery demonstrate accuracy and precision of the method and was found specific in identification of the drugs from dosage form and marketed products. The limit of detection (LOD) for LIG, HYD, and KET were calculated to be 0.563, 0.611, and 0.669 ppm, while the limit of quantification (LOQ) was estimated almost at 1.690, 1.833, and 0.223 ppm, respectively. The AGREE software was utilized to evaluate the greenness score of the proposed method, and it was found greener in score (0.76). This study concluded that the proposed method was simple, accurate, precise, robust, economical, reproducible, and suitable for the estimation of drugs in transdermal gels.


Assuntos
Cetoprofeno , Cromatografia Líquida de Alta Pressão/métodos , Hidrocortisona , Limite de Detecção , Reprodutibilidade dos Testes
9.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208955

RESUMO

The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a novel, promising and emerging biological target for therapeutic intervention in neurodegenerative diseases, especially in Alzheimer's disease (AD). The molMall database, comprising rare, diverse and unique compounds, was explored for molecular docking-based virtual screening against the DYRK1A protein, in order to find out potential inhibitors. Ligands exhibiting hydrogen bond interactions with key amino acid residues such as Ile165, Lys188 (catalytic), Glu239 (gk+1), Leu241 (gk+3), Ser242, Asn244, and Asp307, of the target protein, were considered potential ligands. Hydrogen bond interactions with Leu241 (gk+3) were considered key determinants for the selection. High scoring structures were also docked by Glide XP docking in the active sites of twelve DYRK1A related protein kinases, viz. DYRK1B, DYRK2, CDK5/p25, CK1, CLK1, CLK3, GSK3ß, MAPK2, MAPK10, PIM1, PKA, and PKCα, in order to find selective DYRK1A inhibitors. MM/GBSA binding free energies of selected ligand-protein complexes were also calculated in order to remove false positive hits. Physicochemical and pharmacokinetic properties of the selected six hit ligands were also computed and related with the proposed limits for orally active CNS drugs. The computational toxicity webserver ProTox-II was used to predict the toxicity profile of selected six hits (molmall IDs 9539, 11352, 15938, 19037, 21830 and 21878). The selected six docked ligand-protein systems were exposed to 100 ns molecular dynamics (MD) simulations to validate their mechanism of interactions and stability in the ATP pocket of human DYRK1A kinase. All six ligands were found to be stable in the ATP binding pocket of DYRK1A kinase.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/química , Domínio Catalítico , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinases Dyrk
10.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235011

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has stressed the global health system to a significant level, which has not only resulted in high morbidity and mortality but also poses a threat for future pandemics. This situation warrants efforts to develop novel therapeutics to manage SARS-CoV-2 in specific and other emerging viruses in general. This study focuses on SARS-CoV2 RNA-dependent RNA polymerase (RdRp) mutations collected from Saudi Arabia and their impact on protein structure and function. The Saudi SARS-CoV-2 RdRp sequences were compared with the reference Wuhan, China RdRp using a variety of computational and biophysics-based approaches. The results revealed that three mutations-A97V, P323I and Y606C-may affect protein stability, and hence the relationship of protein structure to function. The apo wild RdRp is more dynamically stable with compact secondary structure elements compared to the mutants. Further, the wild type showed stable conformational dynamics and interaction network to remdesivir. The net binding energy of wild-type RdRp with remdesivir is -50.76 kcal/mol, which is more stable than the mutants. The findings of the current study might deliver useful information regarding therapeutic development against the mutant RdRp, which may further furnish our understanding of SARS-CoV-2 biology.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Antivirais/química , COVID-19/genética , Humanos , Simulação de Acoplamento Molecular , Mutação , Pandemias , Ligação Proteica , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/genética , Arábia Saudita
11.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069962

RESUMO

A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one compounds were designed, synthesized, and screened for antitumor activity against three cell lines, namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1 and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds 2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8, 3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM, respectively) as compared to docetaxel (IC50, 3.98 µM).


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/análise , Antineoplásicos/síntese química , Antineoplásicos/química , Bioensaio , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Quinazolinas/análise , Quinazolinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
J Mol Liq ; 330: 115699, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33867606

RESUMO

Middle east respiratory syndrome coronavirus (MERS-CoV) is a fatal pathogen that poses a serious health risk worldwide and especially in the middle east countries. Targeting the MERS-CoV 3-chymotrypsin-like cysteine protease (3CLpro) with small covalent inhibitors is a significant approach to inhibit replication of the virus. The present work includes generating a pharmacophore model based on the X-ray crystal structures of MERS-CoV 3CLpro in complex with two covalently bound inhibitors. In silico screening of covalent chemical database having 31,642 compounds led to the identification of 378 compounds that fulfils the pharmacophore queries. Lipinski rules of five were then applied to select only compounds with the best physiochemical properties for orally bioavailable drugs. 260 compounds were obtained and subjected to covalent docking-based virtual screening to determine their binding energy scores. The top three candidate compounds, which were shown to adapt similar binding modes as the reported covalent ligands were selected. The mechanism and stability of binding of these compounds were confirmed by 100 ns molecular dynamic simulation followed by MM/PBSA binding free energy calculation. The identified compounds can facilitate the rational design of novel covalent inhibitors of MERS-CoV 3CLpro enzyme as anti-MERS CoV drugs.

13.
Saudi Pharm J ; 29(10): 1166-1172, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34703370

RESUMO

Novel adamantane-based compounds were synthesized and assessed as potential sigma-2 receptor ligands. Molecular docking and 50 ns molecular dynamic simulation were carried out to determine the binding modes, mechanism of interaction, and stability of these compounds within the active site of the sigma-2 receptor. In addition, the ADME-T properties have been explored. The cytotoxicity in cancer cell lines that express sigma-2 receptors was also examined. In addition, the in silico and cytotoxicity data for the new compounds were compared to a reference sigma-2 receptor ligand with high receptor-binding affinity and selectivity. The data suggests that the new compounds interact with the sigma-2 receptor in a comparable manner to the reference compound, and that adamantane can be used as a scaffold to synthesize sigma-2 receptor ligands with useful functional groups that can be used to conjugate moieties for tumor-imaging or cytotoxic cargo delivery.

14.
Biochem Biophys Res Commun ; 512(2): 338-343, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30894278

RESUMO

The binding of SPAK and OSR1 kinases to their upstream WNK kinases is mediated by the interaction of their highly conserved SPAK and OSR1 C-terminal domain (CTD) to RFx [V/I] peptide sequences from WNK kinases. A SPAK CTD knock-in mouse, where SPAK was unable to bind WNK kinases, exhibited low blood pressure. This highlighted the inhibition of SPAK and OSR1 kinases binding to their upstream WNK kinases as a plausible strategy in the discovery of new antihypertensive agents. To facilitate such endeavour, we herein report the optimisation and expression of isotopically labelled OSR1 CTD in E.coli and a structural model based on the sequence specific NMR assignments giving insights into the structure of apo OSR1 CTD. Additionally, we identified the OSR1 CTD amino acid residues that are important for the binding of an 18-mer RFQV peptide derived from human WNK4. Collectively, the NMR backbone assignments and the generated OSR1 CTD 3D model reported in this work will be a powerful resource for the NMR-based discovery of small molecule OSR1 (and SPAK) kinase inhibitors as potential antihypertensive agents.


Assuntos
Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Biochem Biophys Res Commun ; 503(3): 1868-1873, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30060950

RESUMO

SPAK and OSR1 are two protein kinases that play important roles in regulating the function of numerous ion co-transporters. They are activated by two distinct mechanisms that involve initial phosphorylation at their T-loops by WNK kinases and subsequent binding to a scaffolding protein termed MO25. To understand this latter SPAK and OSR1 regulation mechanism, we herein show that MO25 binding to these two kinases is enhanced by serine phosphorylation in their highly conserved WEWS motif, which is located in their C-terminal domains. Furthermore, we show that this C-terminal phosphorylation is carried out by WNK kinases in vitro and involves WNK kinases in cells. Mutagenesis studies revealed key MO25 residues that are important for MO25 binding and activation of SPAK and OSR1 kinases. Collectively, this study provides new insights into the MO25-mediated activation of SPAK and OSR1 kinases, which are emerging as important players in regulating ion homeostasis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Células HEK293 , Humanos , Fosforilação
16.
Chembiochem ; 19(19): 2072-2080, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-29999233

RESUMO

STE20/SPS1-related proline/alanine-rich kinase (SPAK) and oxidative-stress-responsive kinase 1 (OSR1) are two serine/threonine protein kinases that play key roles in regulating ion homeostasis. Various SPAK and OSR1 mouse models exhibited reduced blood pressure. Herein, the discovery of verteporfin, a photosensitising agent used in photodynamic therapy, as a potent inhibitor of SPAK and OSR1 kinases is reported. It is shown that verteporfin binds the kinase domains of SPAK and OSR1 and inhibits their catalytic activity in an adenosine triphosphate (ATP)-independent manner. In cells, verteporfin was able to suppress the phosphorylation of the ion co-transporter NKCC1; a downstream physiological substrate of SPAK and OSR1 kinases. Kinase panel screening indicated that verteporfin inhibited a further eight protein kinases more potently than that of SPAK and OSR1. Although verteporfin has largely been studied as a modifier of the Hippo signalling pathway, this work indicates that the WNK-SPAK/OSR1 signalling cascade is also a target of this clinical agent. This finding could explain the fluctuation in blood pressure noted in patients and animals treated with this drug.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/efeitos dos fármacos , Verteporfina/farmacologia , Células HEK293 , Homeostase , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
17.
Chembiochem ; 18(5): 460-465, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28004876

RESUMO

The binding of the scaffolding protein MO25 to SPAK and OSR1 protein kinases, which regulate ion homeostasis, causes increases of up to 100-fold in their catalytic activity. Various animal models have shown that the inhibition of SPAK and OSR1 lowers blood pressure, and so here we present a new indirect approach to inhibiting SPAK and OSR1 kinases by targeting their protein partner MO25. To explore this approach, we developed a fluorescent polarisation assay and used it in screening of a small in-house library of ≈4000 compounds. This led to the identification of one compound-HK01-as the first small-molecule inhibitor of the MO25-dependent activation of SPAK and OSR1 in vitro. Our data confirm the feasibility of targeting this protein-protein interaction by small-molecule compounds and highlights their potential to modulate ion co-transporters and thus cellular electrolyte balance.


Assuntos
Fenilalanina/análogos & derivados , Ftalimidas/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Bioensaio , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Immunoblotting , Camundongos , Fenilalanina/química , Fenilalanina/metabolismo , Ftalimidas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
18.
J Biomol Struct Dyn ; : 1-17, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287491

RESUMO

Alzheimer's disease (AD) ranks as the most prevalent neurodegenerative disorder with dementia and it accounts for more than 70% of all cases. Despite extensive reporting on the experimental investigation of Datura innoxia (DI) and its phytochemical components in the treatment of AD, the urgent need for elucidation of the principle of multi-mechanism and multi-level treatment of AD remains. In this research, molecular docking and network pharmacology were used to evaluate active compounds and molecular targets of DI for the treatment of AD. The phytochemical compounds of DI were obtained from the Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) as well as the Traditional Chinese Medicine System Pharmacology (TCMSP) databases. The screening includes the 28 most abundant components of DI and the Swiss Target Prediction database was used to predict targets of these compounds. The GeneCards database was used to collect AD-related genes. Both DI and AD targets were imported into a Venn diagram, and the 28 overlapped genes were identified as potential DI anti-AD targets. The results showed that Dinoxin B, Meteloidine, Scopoline, and Tropic acid had no effect on AD-related genes. Furthermore, the GO enrichment analysis indicates that DI influences molecular functions and biological processes such as learning or memory and modulation of chemical synaptic transmission as well as the membrane raft and membrane microdomain. The KEGG pathway analysis revealed that the key pathways implicated in DI's anti-AD actions include serotonergic synapse, IL-17 signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. Based on the STRING and Cytoscape network-analysis platforms, the top ten anti-AD core targets include APP, CASP3, IL6, BACE1, IL1B, ACE, PSEN1, GAPDH, GSK3B and ACHE. The molecular docking and molecular dynamic simulation of the top two molecules against the top three target proteins confirmed the strong binding affinity and stability at the docked site. Overall, our findings pave the path for further research into the development and optimization of potential anti-AD agents from DI.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; : 1-11, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411016

RESUMO

The bacterial cell wall, being a vital component for cell viability, is regarded as a promising drug target. The L, D-Transpeptidase YcbB enzyme has been implicated for a significant role in cell wall polymers cross linking during typhoid toxin release, ß-lactam resistance and outer membrane defect rescue. These observations have been recorded in different bacterial pathogens such as Salmonella Typhimurium, Citrobacter rodentium, and Salmonella typhi. In this work, we have shown structure based virtual screening of diverse natural and synthetic drug libraries against the enzyme and revealed three compounds as LAS_32135590, LAS_34036730 and LAS-51380924. These compounds showed highly stable energies and the findings are very competitive with the control molecule ((1RG or (4 R,5S)-3-({(3S,5S)-5-[(3-carboxyphenyl)carbamoyl]pyrrolidin-3-yl}sulfanyl)-5-[(1S,2R)-1-formyl-2-hydroxypropyl]-4-methyl-4,5-dihydro-1H-pyrrole-2-carboxylic acid or ertapenem)) used. Compared to control (which has binding energy score of -11.63 kcal/mol), the compounds showed better binding energy. The binding energy score of LAS_32135590, LAS_34036730 and LAS-51380924 is -12.63 kcal/mol, -12.22 kcal/mol and -12.10 kcal/mol, respectively. Further, the docked snapshot of the lead compounds and control were investigated for stability under time dependent dynamics environment. All the three leads complex and control system showed significant equilibrium (mean RMSD < 3 Å) both in term of intermolecular docked conformation and binding interactions network. Further validation on the complex's stability was acquired from the end-state MMPB/GBSA analysis that observed greater contribution from van der Waals forces and electrostatic energy while less contribution was noticed from solvation part. The compounds were also showed good drug-likeness and are non-toxic and non-mutagenic. In short, the compounds can be used in experimental testing's and might be subjected to structure modification to get better results.Communicated by Ramaswamy H. Sarma.

20.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637900

RESUMO

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA