Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Australas Phys Eng Sci Med ; 34(2): 251-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21465275

RESUMO

This study examines the dosimetric accuracy of Gafchromic EBT2 model radiochromic film for use in radiotherapy quality assurance. In this study, film was scanned using an Epson Perfection V700 flatbed scanner in transmission mode at 75 DPI with the subsequent analysis performed using the red and blue colour channels and ImageJ software. Results of this study suggest that the conversion of film optical density to measured dose should, at present, utilise red channel data only, without application of a blue channel correction to the data. For the batch of film examined here, film uniformity and reproducibility appear to have improved compared with published results using older batches. The orientation of the film on the scanner and the side of the film facing the light source were found to have substantial effects on results. Based on the results of this study, it is possible to recommend the use of EBT2 film in routine quality assurance testing for radiotherapy, in situations where a dose uncertainty of up to 2.8% is acceptable.


Assuntos
Dosimetria Fotográfica/instrumentação , Radioterapia/instrumentação , Filme para Raios X/normas , Relação Dose-Resposta à Radiação , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/normas , Controle de Qualidade , Radioterapia/métodos , Radioterapia/normas , Reprodutibilidade dos Testes
2.
Australas Phys Eng Sci Med ; 34(3): 333-43, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21748444

RESUMO

In response to the clinical need for a dosimetry system with both high resolution and minimal angular dependence, this study demonstrates the utility of Gafchromic EBT2 radiochromic dosimetry film for the quality assurance of micro-collimated IMRT, RapidArc and TomoTherapy treatments. Firstly, preliminary measurements indicated that the dose response of EBT2 film does not appreciably vary with either the angle of incidence of the radiation beam or the depth in water at which the film is placed. Secondly, prostate treatment plans designed for delivery using static-beam IMRT (collimated using the BrainLab m3 microMLC), RapidArc and TomoTherapy were investigated by comparing dose planes obtained from treatment planning calculations with EBT2 film measurements. For all treatment plans, the proportion of dose points agreeing with the film measurements to within γ (3%,3 mm) was found to be above 95%, with all points agreeing within 5%. The film images provided sufficient information to verify that the treatments could be delivered with an acceptable level of accuracy, while also providing additional information on low-level dose variations that were not predicted by the treatment planning systems. This information included: the location and extent of dose from inter-leaf leakage (in the RapidArc plan) and helical field junctioning (in the TomoTherapy plan), as well as the existence of small regions where the treatment planning system under-predicted the dose from very small treatment segments (in the micro-collimated IMRT plan).


Assuntos
Adenocarcinoma/radioterapia , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X , Humanos , Masculino , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
3.
Phys Eng Sci Med ; 44(2): 565-572, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33704691

RESUMO

This study investigates and validates the use of the Octavius 4D system for patient specific quality assurance on Halcyon, which is capable of rotating at 4 revolutions per minute (RPM). A commercially available PTW Octavius 4D system was used for this study which had a maximum rotation speed of 3 RPM. Initial validation included testing the accuracy of the inclinometer, percent depth doses (PDD), output factors, and dose profiles for selected static square fields. The same static fields were also subject to a gamma comparison with the TPS. This was followed by an evaluation of twelve clinical treatment plans and seven non-clinical plans with varying gantry rotation speeds. All testing was completed using detector array measurement times of 200 ms and 100 ms. Inclinometer accuracy was within 0.3° of actual gantry angle. Output factors varied less than 0.6%, PDD differences were no greater than 1.4%, and dose profile differences were less than 2.2%. Gamma pass rates for the static fields were 96.7% (2%/2mm) and 99.7% (3%/3mm). A prototype control unit, which had a maximum rotation speed of 4 RPM was also used to test the clinical and non-clinical plans. For the clinical plans, the mean gamma pass rates (2%/2mm) were 86.1% and 88.1% for the commercial unit and prototype unit respectively. Results using a measurement time of 200 ms were superior to those using 100 ms. For Halcyon deliveries greater than 3 RPM, worst case gamma results for the commercial unit were 28.6% compared to 98.5% using the prototype unit. Accurate patient specific quality assurance results can be obtained using the Octavius 4D system with a Halcyon linac, provided that the system measurement time is kept at 200 ms and the rotation speed of Halycon does not exceed 3 RPM. For higher RPM deliveries, an Octavius 4D unit with 4 RPM rotation capability is recommended.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Rotação
4.
Australas Phys Eng Sci Med ; 39(1): 199-209, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581763

RESUMO

This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.


Assuntos
Eletrônica Médica/instrumentação , Elétrons , Imageamento Tridimensional/instrumentação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes , Razão Sinal-Ruído
5.
Med Phys ; 41(10): 101701, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25281940

RESUMO

PURPOSE: Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. METHODS: Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable "air cap". A set of output ratios (ORDet (fclin) ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORDet (fclin) measured using an IBA stereotactic field diode (SFD). kQclin,Qmsr (fclin,fmsr) was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that kQclin,Qmsr (fclin,fmsr) was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which is "correction-free" in small field relative dosimetry. In addition, the feasibility of experimentally transferring kQclin,Qmsr (fclin,fmsr) values from the SFD to unknown diodes was tested by comparing the experimentally transferred kQclin,Qmsr (fclin,fmsr) values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. RESULTS: 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5-50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated kQclin,Qmsr (fclin,fmsr) for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer kQclin,Qmsr (fclin,fmsr) from one commercially available detector to another using experimental methods and the recommended experimental setup. CONCLUSIONS: It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be "correction-free" depends strongly on its design and composition. A nonwater-equivalent detector can only be "correction-free" if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.


Assuntos
Radiometria/instrumentação , Ar , Algoritmos , Simulação por Computador , Elétrons , Desenho de Equipamento , Estudos de Viabilidade , Teste de Materiais , Método de Monte Carlo , Radiometria/métodos , Incerteza , Água
6.
Med Phys ; 39(6Part12): 3742, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28517806

RESUMO

PURPOSE: To report on an initial investigation into the use of optically stimulated luminescent dosimeters (OSLDs) for in-vivo dosimetry for total body irradiation (TBI) treatments. Specifically, we report on the determination of angular dependence, sensitivity correction factors and the dose calibration factors. METHODS: The OSLD investigated in our work was InLight/OSL nanoDot dosimeters (Landauer Inc.). Nanodots are 5 mm diameter, 0.2 mm thick disk-shaped Carbon-doped Al2O3, and were read using a Landauer InLight microstar reader and associated software.OSLDs were irradiated under two setup conditions: a) typical clinical reference conditions (95cm SSD, 5cm depth in solid water, 10×10 cm field size), and b) TBI conditions (520cm SSD, 5cm depth in solid water, 40×40 cm field size,). The angular dependence was checked for angles ranging ±60 degree from normal incidence. In order to directly compare the sensitivity correction factors, a common dose was delivered to the OSLDs for the two setups. Pre- and post-irradiation readings were acquired. OSLDs were optically annealed under various techniques (1) by keeping over a film view box, (2) Using multiple scan on a flat bed optical scanner and (3) Using natural room light. RESULTS: Under reference conditions, the calculated sensitivity correction factors of the OSLDs had a SD of 2.2% and a range of 5%. Under TBI conditions, the SD increased to 3.4% and the range to 6.0%. The variation in sensitivity correction factors between individual OSLDs across the two measurement conditions was up to 10.3%. Angular dependence of less than 1% is observed. The best bleaching method we found is to keep OSLDs for more than 3 hours on a film viewer which will reduce normalized response to less than 1%. CONCLUSIONS: In order to obtain the most accurate results when using OSLDs for in-vivo dosimetry for TBI treatments, sensitivity correction factors and dose calibration factors should all be determined under clinical TBI conditions.

7.
Phys Med Biol ; 55(15): L37-42, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20616403

RESUMO

To enhance the utility of radiochromic films for high-resolution dosimetry of small and modulated radiotherapy fields, we propose a means to negate the effects of heterogeneities in EBT2 (and other) films. The results of using our simple procedure for evaluating radiation dose in EBT2 film are compared with the results of using the manufacturer's recommended procedure as well as a procedure previously established for evaluating dose in older EBT film. It is shown that Newton's ring-like scanning artefacts can be avoided through the use of a plastic frame, to elevate the film above the scanner's surface. The effects of film heterogeneity can be minimized by evaluating net optical density, pixelwise, as the logarithm of the ratio of the red-channel pixel value in each pixel of each irradiated film to the red-channel pixel value in the same pixel in the same film prior to irradiation. The application of a blue-channel correction was found to result in increased noise. It is recommended that, when using EBT2 film for radiotherapy quality assurance, the films should be scanned before and after irradiation and analysed using the method proposed herein, without the use of the blue-channel correction, in order to produce dose images with minimal film heterogeneity effects.


Assuntos
Radiometria/métodos , Calibragem , Fenômenos Ópticos
8.
Phys Med Biol ; 55(17): N451-63, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20702922

RESUMO

This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc's standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (microMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimized. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of microMLC transmission and interleaf leakage. Simulations and measurements to obtain microMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimize a VARMLC model to match the dose delivered by their local BrainLAB m3 microMLC device.


Assuntos
Neoplasias Encefálicas/radioterapia , Dosimetria Fotográfica/métodos , Método de Monte Carlo , Radiocirurgia/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Dosimetria Fotográfica/instrumentação , Humanos , Modelos Lineares , Modelos Biológicos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA