Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 59(17): 12913-12919, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32811139

RESUMO

Low-temperature reaction of A-site-ordered layered perovskite Eu2SrFe2O7 (T structure) with CaH2 induces a shift in the Eu2O2 slabs to form Eu2SrFe2O6 with a T' structure (I4/mmm space group) in which only the Fe cation is reduced. Contrary to the previously reported T' structures with Jahn-Teller-active d9 cations (Cu2+ and Ni+), stabilization of Eu2SrFe2O6 with the Fe2+ (d6) cation reflects the stability of the FeO4 square-planar unit. The stability of T'-type Eu2SrFe2O6 over a T-type polymorph is confirmed by density functional theory calculations, revealing the dz2 occupancy for the T' structure. Eu2SrFe2O6 has a bilayer magnetic framework with an Fe-O-Fe superexchange J∥ and an Fe-Fe direct exchange J⊥ (where J∥ > J⊥), which broadly explains the observed TN of 390-404 K. Interestingly, the magnetic moments of Eu2SrFe2O6 lie in the ab plane, in contrast to the structurally similar Sr3Fe2O4Cl2 having an out-of-plane spin alignment.

2.
Phys Chem Chem Phys ; 17(5): 3749-60, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25557948

RESUMO

We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O(2-) ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O(2-) (plateau) while Fe seems to retain its 3+ state.


Assuntos
Ferro/química , Lítio/química , Manganês/química , Oxigênio/química , Compostos de Rutênio/química , Técnicas Eletroquímicas , Íons/química , Magnetismo , Oxirredução , Óxidos/química , Espectroscopia Fotoeletrônica
3.
Inorg Chem ; 47(14): 6475-81, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18553908

RESUMO

We have been working for sometime on the synthesis at high pressure (P < or = 12.5 Gpa) and high temperature (T < or = 1400 K) of new materials of the type MSr2RECu2O8 (RE = Rare Earth), which formally derive from YBCO (i.e., CuBa2YCu2O7) by replacing the [Cu-O4] squares in the basal plane of the structure by [M-O6] octahedra (M = Ru, Cr or Ir). The adequate formation of these cuprates, as majority phases, can only be performed in a particular and relatively narrow window of P and T, outside which they cannot be obtained pure or even obtained at all. These "optimum conditions" bear a remarkable Gaussian correlation with the rare earth ion size, the rare earth cation being at the center of the unit cell in the YBCO setting, and they do not follow the classic lanthanide contraction so often observed in the chemistry of those elements. Instead, interelectronic repulsion seems to play a major role in fixing the synthesis conditions. Moreover, the position of the Gaussian tip in the pressure-ionic radii space is also dependent on the transition metal that sits in the octahedron, in a way that seems related to the thermodynamic stability of their simpler oxides.

4.
Inorg Chem ; 47(19): 8526-42, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18821819

RESUMO

This work presents an overview of a series of increasingly complex oxides synthesized from CrO 2, under high-pressure and high-temperature conditions, having Cr (4+) in octahedral coordination. Although the emphasis is on the structure and microstructure of the compounds as obtained from X-ray diffraction and transmission electron microscopy and diffraction, attention is also given to their interesting electronic and magnetic properties. The study is complemented with an electron energy loss spectroscopic analysis of the different phases. These are the cubic perovskite SrCrO 3, the orthorhombic perovskite CaCrO 3, the solid solution Sr 1-xCa xCrO 3, the Ruddlesden-Popper-type Sr 3Cr 2O 7, the family CrSr 2RECu 2O 8 (RE = rare earth), a compositionally modulated perovskite "PbCrO 3", and the misfit layer oxide SrO 2[CrO 2] 1.85.

5.
Dalton Trans ; 46(35): 11698-11703, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28825758

RESUMO

YBCO samples with different microstructures were prepared after the thermal treatment of a precursor previously obtained by autocombustion. A drastic influence of the particle size on the magnetic behavior of the samples was observed. Thus, particles smaller than 110 nm do not exhibit superconducting properties and for those ranging around 200 nm the diamagnetic signal characteristic of the superconductivity at low temperature disappears in a large applied magnetic field. Particles larger than 300 nm do not exhibit the particle size effect. Accompanying such a phenomenon, an increase of the superconducting critical temperature is observed with the augmentation of the particle size, the lowest value being 18 K which corresponds to 110 nm particles.

6.
Dalton Trans ; 44(23): 10795-805, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25740006

RESUMO

Detailed studies of the electronic states for Mo(0.3)Cu(0.7)Sr(2)ErCu(2)Oy samples with different oxygen contents are presented here. The influence of oxygenation on the electronic states for the Mo(0.3)Cu(0.7)Sr(2)ErCu(2)Oy system from the semiconducting to the superconducting state has been investigated by means of X-ray photoelectron spectroscopy (XPS). The XPS studies show that Mo is in a mixed Mo(V) and Mo(VI) oxidation state and Mo(V) is predominant over the Mo(VI) in the as-prepared (AP) sample. Yet annealing under an oxygen atmosphere enhances the Mo(VI) state. At the same time, a reduction in the copper species is observed. In the Cu 2p spectra, a larger energy separation between the satellite and main peaks (E(S)-E(M)) and a lower intensity ratio (I(S)/I(M)) are found to correlate with higher values of the superconducting transition temperature (T(C)). Analysis of these spectra within the Configuration Interaction (CI) model suggests that higher values of TC are related to lower values of the O 2p-Cu 3d charge transfer energy. The change in the Sr 3d and O 1s core level spectra correlates with the oxygen insertion in the (Mo/Cu)O(1+δ) chain site, after oxygenation. The hole concentration (Ph) in the copper plane has been obtained using the room temperature thermoelectric power (TEP) value; this shows an increasing tendency with increasing T(C), after oxygenation. From these experimental results, one observes that T(C)increases with decreasing charge transfer energy. This is, indeed, opposite to the accepted views and occurs in parallel with the shortening of the apical copper-oxygen distance (Cu(2)-O(2)) and the increasing of the CuO(2) plane buckling angle.

7.
J Phys Condens Matter ; 25(16): 165704, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23551981

RESUMO

A detailed study of the structure and properties for the as-prepared and oxygen annealed Mo0.3Cu0.7Sr2TmCu2Oy material is reported. The Cu/Mo cationic distribution is established using a combination of x-ray/neutron powder diffraction refinement. The chemical substitution of the Mo ions for the Cu ions in the CuYSr2Cu2O(7-δ) structure is found to occur in both of the copper sites for the as-prepared sample. Interestingly, no trace of Mo substitution in the copper plane site is found to occur after oxygenation. The as-prepared Mo0.3Cu0.7Sr2TmCu2Oy material is found to be a spin glass (SG) system and explained on the basis of the cluster-by-cluster freezing model. On the other hand, the oxygen annealed material is superconducting (SC) (T(SC,onset) = 31 K). A peak has been observed in the critical current density plot and can be explained on the basis of field induced pins. The influence of oxygen annealing in the structure and properties of this material are presented and discussed. This seems to be the first case of a SG-SC transformation following an oxidation reaction in cuprates.

8.
Dalton Trans ; 41(6): 1840-7, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22167010

RESUMO

The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA