Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(2): 963-979, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401984

RESUMO

A computationally efficient time-resolved diffuse optical tomography (TR-DOT) prototype was demonstrated using an accelerated inverse problem solver to reconstruct high quality 3D images of highly scattering media such as tissues. The inverse problem solver utilizes seven well-defined points on each experimentally recorded histogram of the distribution time-of-flight (DToF). In this work, the accuracy of the recovered optical properties, and the computational load and time of TR-DOT prototype were investigated using cylindrical turbid phantoms. These phantoms were measured using transmittance geometry under different conditions in multiple experiments to evaluate the performance of this prototype. Overall, the results of evaluation are important in the realization of a real-time and highly accurate TR-DOT system for diffuse optical imaging applications.

2.
Sensors (Basel) ; 18(11)2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380688

RESUMO

Time-resolved diffuse optical spectroscopy (TR-DOS) is an increasingly used method to determine the optical properties of diffusive media, particularly for medical applications including functional brain, breast and muscle measurements. For medical imaging applications, important features of new generation TR-DOS systems are low-cost, small size and efficient inverse modeling. To address the issues of low-cost, compact size and high integration capabilities, we have developed free-running (FR) single-photon avalanche diodes (SPADs) using 130 nm silicon complementary metal-oxide-semiconductor (CMOS) technology and used it in a TR-DOS prototype. This prototype was validated using assessments from two known protocols for evaluating TR-DOS systems for tissue optics applications. Following the basic instrumental performance protocol, our prototype had sub-nanosecond total instrument response function and low differential non-linearity of a few percent. Also, using light with optical power lower than the maximum permissible exposure for human skin, this prototype can acquire raw data in reflectance geometry for phantoms with optical properties similar to human tissues. Following the MEDPHOT protocol, the absolute values of the optical properties for several homogeneous phantoms were retrieved with good accuracy and linearity using a best-fitting model based on the Levenberg-Marquardt method. Overall, the results of this study show that our silicon CMOS-based SPAD detectors can be used to build a multichannel TR-DOS prototype. Also, real-time functional monitoring of human tissue such as muscles, breasts and newborn heads will be possible by integrating this detector with a time-to-digital converter (TDC).


Assuntos
Custos e Análise de Custo , Óptica e Fotônica/economia , Óptica e Fotônica/instrumentação , Fótons , Análise Espectral , Humanos , Dinâmica não Linear , Imagens de Fantasmas , Fatores de Tempo
3.
Sensors (Basel) ; 17(9)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28906462

RESUMO

Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA