Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gastroenterology ; 145(1): 138-148, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23562752

RESUMO

BACKGROUND & AIMS: Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS: We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS: We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS: In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.


Assuntos
Diarreia/etiologia , Doenças do Sistema Endócrino/etiologia , Síndromes de Malabsorção/etiologia , Obesidade/complicações , Pró-Proteína Convertase 1/deficiência , Adolescente , Hormônio Adrenocorticotrópico/sangue , Criança , Pré-Escolar , Estudos de Coortes , Doenças do Sistema Endócrino/complicações , Doenças do Sistema Endócrino/congênito , Feminino , Humanos , Lactente , Masculino , Mutação , Obesidade/congênito , Pró-Proteína Convertase 1/genética
2.
J Neurosci ; 28(1): 304-14, 2008 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-18171947

RESUMO

The synaptic membrane-associated guanylate kinase (MAGUK) scaffolding protein family is thought to play key roles in synapse assembly and synaptic plasticity. Evidence supporting these roles in vivo is scarce, as a consequence of gene redundancy in mammals. The genome of Drosophila contains only one MAGUK gene, discs large (dlg), from which two major proteins originate: DLGA [PSD95 (postsynaptic density 95)-like] and DLGS97 [SAP97 (synapse-associated protein)-like]. These differ only by the inclusion in DLGS97 of an L27 domain, important for the formation of supramolecular assemblies. Known dlg mutations affect both forms and are lethal at larval stages attributable to tumoral overgrowth of epithelia. We generated independent null mutations for each, dlgA and dlgS97. These allowed unveiling of a shift in expression during the development of the nervous system: predominant expression of DLGA in the embryo, balanced expression of both during larval stages, and almost exclusive DLGS97 expression in the adult brain. Loss of embryonic DLGS97 does not alter the development of the nervous system. At larval stages, DLGA and DLGS97 fulfill both unique and partially redundant functions in the neuromuscular junction. Contrary to dlg and dlgA mutants, dlgS97 mutants are viable to adulthood, but they exhibit marked alterations in complex behaviors such as phototaxis, circadian activity, and courtship, whereas simpler behaviors like locomotion and odor and light perception are spared. We propose that the increased repertoire of associations of a synaptic scaffold protein given by an additional domain of protein-protein interaction underlies its ability to integrate molecular networks required for complex functions in adult synapses.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Junção Neuromuscular/fisiologia , Isoformas de Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Geneticamente Modificados , Ritmo Circadiano/fisiologia , Drosophila , Proteínas de Drosophila/genética , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Potenciais da Membrana/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Atividade Motora , Mutação/fisiologia , Junção Neuromuscular/ultraestrutura , Isoformas de Proteínas/genética , Comportamento Sexual Animal/fisiologia , Proteínas Supressoras de Tumor/genética
3.
Gene Expr Patterns ; 8(6): 443-451, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18501681

RESUMO

The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Processamento Alternativo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/metabolismo , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/metabolismo , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
Bone ; 84: 120-130, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26746780

RESUMO

FGF23 is an O-glycosylated circulating peptide hormone with a critical role in phosphate homeostasis; it is inactivated by cellular proprotein convertases in a pre-release degradative pathway. We have here examined the metabolism of FGF23 in a model bone cell line, IDG-SW3, prior to and following differentiation, as well as in regulated secretory cells. Labeling experiments showed that the majority of (35)S-labeled FGF23 was cleaved to smaller fragments which were constitutively secreted by all cell types. Intact FGF23 was much more efficiently stored in differentiated than in undifferentiated IDG-SW3 cells. The prohormone convertase PC2 has recently been implicated in FGF23 degradation; however, FGF23 was not targeted to forskolin-stimulatable secretory vesicles in a regulated cell line, suggesting that it lacks a targeting signal to PC2-containing compartments. In vitro, PC1/3 and PC2, but not furin, efficiently cleaved glycosylated FGF23; surprisingly, PC5/6 accomplished a small amount of conversion. FGF23 has recently been shown to be phosphorylated by the kinase FAM20C, a process which was shown to reduce FGF23 glycosylation and promote its cleavage; our in vitro data, however, show that phosphorylation does not directly impact cleavage, as both PC5/6 and furin were able to efficiently cleave unglycosylated, phosphorylated FGF23. Using qPCR, we found that the expression of FGF23 and PC5/6, but not PC2 or furin, increased substantially following osteoblast to osteocyte differentiation. Western blotting confirmed the large increase in PC5/6 expression upon differentiation. FGF23 has been linked to a variety of bone disorders ranging from autosomal dominant hypophosphatemic rickets to chronic kidney disease. A better understanding of the biosynthetic pathway of this hormone may lead to new treatments for these diseases.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Células CHO , Cricetinae , Cricetulus , DNA Complementar/genética , Fator de Crescimento de Fibroblastos 23 , Glicosilação , Humanos , Imuno-Histoquímica , Camundongos , N-Acetilgalactosaminiltransferases/metabolismo , Proteína Secretora Neuroendócrina 7B2/metabolismo , Fosforilação , Pró-Proteína Convertases/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Transfecção , Polipeptídeo N-Acetilgalactosaminiltransferase
5.
PLoS One ; 8(1): e55065, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383060

RESUMO

BACKGROUND: Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity. METHODOLOGY/PRINCIPAL FINDINGS: A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3. CONCLUSION/SIGNIFICANCE: Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted.


Assuntos
Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Biocatálise , Bases de Dados Genéticas , Diabetes Mellitus/genética , Feminino , Humanos , Neuropeptídeos/biossíntese , Obesidade/genética , Análise de Sequência de DNA , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA