Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 20(6): 995-1004, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098088

RESUMO

Mediterranean tomato landraces adapted to arid environments represent an option to counteract drought, and to address the complexity of responses to water deficit and recovery, which is a crucial component of plant adaptation mechanisms. We investigated physiological, biochemical and molecular responses of two Mediterranean tomato landraces, 'Locale di Salina' (Lc) and 'Pizzutello di Sciacca' (Pz) under two dehydration periods and intermediate rehydration in greenhouse pot experiments. Relationship between CO2 assimilation (A) and stomatal conductance under severe water stress (gs  < 0.05 mol·m-2 ·s-1 ) indicated the occurrence of stomatal and non-stomatal limitations of photosynthesis. Gas exchange promptly recovered within 2-3 days of rehydration. ABA and gs showed a strict exponential relationship. Both leaf ABA and proline peaked under severe water stress. Lc showed higher accumulation of ABA and higher induction of the expression of both NCED and P5CS genes than Pz. Poly(ADP-ribose) polymerase increased during imposition of stress, mainly in Lc, and decreased under severe water stress. The two landraces hardly differed in their physiological performance. Under severe water stress, gs showed low sensitivity to ABA, which instead controlled stomatal closure under moderate water stress (gs  > 0.15 mol·m-2 ·s-1 ). The prompt recovery after rehydration of both landraces confirmed their drought-tolerant behaviour. Differences between the two landraces were instead observed at biochemical and molecular levels.


Assuntos
Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Desidratação , Fluorescência , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Região do Mediterrâneo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Reação em Cadeia da Polimerase , Prolina/metabolismo
2.
Environ Exp Bot ; 44(3): 243-255, 2000 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11064044

RESUMO

Sunflower (Helianthus annuus) was grown in both open-field and outdoor potted conditions in Southern Italy, and irrigated with water having electrical conductivity ranging between 0.9 and 15.6 dS m(-1) obtained by different NaCl concentrations. The aim of the work was to study the leaf area and photosynthetic responses of sunflower to mild salt stress. The response curve (A/c(i)) of assimilation (A) to leaf internal CO(2) concentration (c(i)) was used to determine leaf gas-exchange parameters, in order to evaluate stomatal and non-stomatal limitations to photosynthesis in relation to salt stress. In the field, a reduction of 19% in leaf area expansion occurred, while no correlation was observed between Psi(l) and stomatal conductance to water vapour (g(sw)) ranging between 0.76 and 1.35 mol m(-2) s(-1). This result was also evident at a higher salinity level reached in the pot experiment where leaf osmotic potential (psi(s)) varied from -1.35 to -2.67 MPa as compared with the field experiment, where psi(s) ranged from -1.15 to -1.42 MPa. Considering the two experiments as a unique data set, the assimilation rate, the stomatal conductance to CO(2) (g(sc)) and the sensitivity of A to c(i) variation (g*) were not significantly influenced by salinity in the whole range of psi(s). As a consequence, the stomatal and non-stomatal limitations to photosynthesis were not affected by salt treatment, averaging around 20 and 80%, respectively. The variation in A (from 44 to 29 µmol m(-2) s(-1)) was paralleled by the variation in g(sc) (from 0.47 to 0.84 mol m(-2) s(-1)), with a remarkable constancy of both c(i) (200+/-12.5 µmol mol(-1)) and normalized water-use efficiency (5+/-0.7 µmol mmol(-1) kPa), showing the optimal behaviour of the plant processes. These findings indicate that, under mild salt stress, the same as observed under water deficit, sunflower controls assimilation mainly by modulating leaf area rather than by stomatal closure, and that non-stomatal limitation of photosynthesis was not affected at all by the level of salinity reached in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA