Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neurosci ; : 1-9, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37659008

RESUMO

BACKGROUND AND AIM: Monosodium glutamate (MSG) is used in food-additives, and the Food and Drug Administration has placed it under intense scrutiny following several reports that it causes glutamate neurotoxicity. Ashwagandha (ASH) roots are traditionally used for memory enhancement. This study aimed to evaluate the nootropic activity of ASH as well as its therapeutic anti-amnesic activity against MSG-induced hippocampal-dependent spatial memory impairment and hippocampal-NMDAR modulation. METHOD: A total of 36 rats were divided equally into six groups (n = 6 in each group); the rats in the normal and negative groups were administered daily doses of normal saline and MSG (300 mg/kg), respectively, for 21 days. Two nootropic groups were administered ASH at 300 and 500 mg/kg o.p., respectively, for 21 days. Two other treatment groups were administered daily doses of MSG 300 mg/kg o.p. as well as 300 mg/kg and 500 mg/kg o.p. of ASH for 21 days. The rats' spatial memory was assessed for five days using the MWM. Additionally, NMDAR were measured quantitatively by immunohistochemistry. RESULTS: We found that the rats in the nootropic groups showed significantly enhanced nootropic activity characterized by improved hippocampal-dependent spatial memory, as well as increases in the level of NMDAR in the Cornu Ammonis 1 region of their hippocampus. Moreover, we elucidated the therapeutic potential of ASH to protect against the depression of spatial memory caused by MSG-induced neurotoxicity. CONCLUSION: Further, we elucidated a strong correlation between NMDAR-positive cells in the hippocampus and enhancement of spatial learning induced by long-term administration of ASH as well as a strong correlation between NMDAR positive cells in the hippocampus and depression of spatial learning induced by long-term administration of ASH and MSG.

2.
Front Physiol ; 10: 209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894820

RESUMO

Aim: To investigate whether housing temperature influences rat adiposity, and the extent it is modified by diet and/or pregnancy. Housing temperature impacts on brown adipose tissue, that possess a unique uncoupling protein (UCP) 1, which, when activated by reduced ambient temperature, enables rapid heat generation. Methods: We, therefore, examined whether the effects of dietary induced rise in fat mass on interscapular brown fat in female rats were dependent on housing temperature, and whether pregnancy further modulates the response. Four week old rats were either maintained at thermoneutrality (27°C) or at a "standard" cool temperature (20°C), and fed either a control or obesogenic (high in fat and sugar) diet until 10 weeks old. They were then either tissue sampled or mated with a male maintained under the same conditions. The remaining dams were tissue sampled at either 10 or 19 days gestation. Results: Diet had the greatest effect on fat mass at thermoneutrality although, by 19 days gestation, fat weight was similar between groups. Prior to mating, the abundance of UCP1 was higher at 20°C, but was similar between groups during pregnancy. UCP1 mRNA followed a similar pattern, with expression declining to a greater extent in the animals maintained at 20°C. Conclusion: Housing temperature has a marked influence on the effect of dietary induced rise in fat deposition that was modified through gestation. This maybe mediated by the reduction in UCP1 with housing at thermoneutrality prior to pregnancy and could subsequently impact on growth and development of the offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA