Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674998

RESUMO

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Longevidade , Resposta a Proteínas não Dobradas
2.
Pharmacol Res ; 121: 114-121, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28465217

RESUMO

Major Depressive Disorder (MDD, ICD-10: F-33) is a prevalent illness in which the pathogenic mechanism remains elusive. Recently an important role has been attributed to neuro-inflammation, and specifically the NLRP3-inflammasome complex, in the pathogenesis of MDD. This suggests a key role for immunomodulation as a key pathway in the treatment of this disorder. This study evaluates the involvement of nine common antidepressants in the NLRP3-inflammasome complex (fluoxetine, paroxetine, mianserin, mirtazapine, venlafaxine, desvenlafaxine, amitriptyline, imipramine and agomelatine), both in in vitro THP-1 cells stimulated by ATP, and in a stress-induced depressive animal or MDD patients. Antidepressant treatment induced inflammasome inhibition was observed by decreased serum levels of IL-1ß and IL-18 and decrease of NLRP3 and IL-1ß (p17) protein expression. This was also observed under stress-induced depressive behaviour and inflammasome activation in C57Bl/6 mice in vivo. Deletion of key autophagy mediator Atg5 in embryonic fibroblasts (MEF cells) showed an autophagy dependent-NLRP3-inflammasome inhibition by antidepressant treatment. These results suggest the NLRP3-inflammasome could be a biomarker for antidepressant treatment response in MDD patients, and therefore the monitoring of NLRP3 expression levels and/or IL-1ß/IL-18 release may have clinical value in drug selection. Existing evidence suggests an anti-inflammatory effect of some antidepressants shown by IL-1ß, IL-6 and TNF-α. Our data have shown that antidepressant-mediated autophagy may have a role in restoration of certain metabolic and immunological pathways in MDD patients.


Assuntos
Antidepressivos/uso terapêutico , Autofagia/efeitos dos fármacos , Transtorno Depressivo Maior/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Adulto , Animais , Antidepressivos/farmacologia , Linhagem Celular , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/imunologia , Feminino , Humanos , Inflamassomos/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia
3.
J Med Genet ; 53(2): 113-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26566881

RESUMO

BACKGROUND: Fibromyalgia (FM) is a worldwide diffuse musculoskeletal chronic pain condition that affects up to 5% of the general population. Many symptoms associated with mitochondrial diseases are reported in patients with FM such as exercise intolerance, fatigue, myopathy and mitochondrial dysfunction. In this study, we report a mutation in cytochrome b gene of mitochondrial DNA (mtDNA) in a family with FM with inflammasome complex activation. METHODS: mtDNA from blood cells of five patients with FM were sequenced. We clinically and genetically characterised a patient with FM and family with a new mutation in mtCYB. Mitochondrial mutation phenotypes were determined in skin fibroblasts and transmitochondrial cybrids. RESULTS: After mtDNA sequence in patients with FM, we found a mitochondrial homoplasmic mutation m.15804T>C in the mtCYB gene in a patient and family, which was maternally transmitted. Mutation was observed in several tissues and skin fibroblasts showed a very significant mitochondrial dysfunction and oxidative stress. Increased NLRP3-inflammasome complex activation was observed in blood cells from patient and family. CONCLUSIONS: We propose further studies on mtDNA sequence analysis in patients with FM with evidences for maternal inheritance. The presence of similar symptoms in mitochondrial myopathies could unmask mitochondrial diseases among patients with FM. On the other hand, the inflammasome complex activation by mitochondrial dysfunction could be implicated in the pathophysiology of mitochondrial diseases.


Assuntos
Proteínas de Transporte/genética , Citocromos b/genética , Fibromialgia/genética , Inflamassomos/genética , Mutação , Adulto , Proteínas de Transporte/metabolismo , Citocromos b/química , Citocromos b/metabolismo , DNA Mitocondrial/genética , Feminino , Fibromialgia/patologia , Humanos , Inflamassomos/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Linhagem
4.
Biochim Biophys Acta ; 1852(7): 1257-67, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25779083

RESUMO

Impaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity, altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain condition that affects up to 5% of the general population and comprises all the above mentioned pathophysiological states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These results suggest that AMPK plays an essential role in FM pathophysiology and could represent the basis for a valuable new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting therapeutic approach in FM.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Restrição Calórica , Fibroblastos/metabolismo , Fibromialgia/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo
5.
Biogerontology ; 16(5): 599-620, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26105157

RESUMO

Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.


Assuntos
Envelhecimento/metabolismo , Autofagia , Metabolismo Energético , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores Etários , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Animais , Antioxidantes/uso terapêutico , Autofagia/efeitos dos fármacos , Restrição Calórica , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Brain Behav Immun ; 36: 111-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513871

RESUMO

INTRODUCTION: Major depressive disorder (MDD) is a very prevalent disease which pathogenic mechanism remains elusive. There are some hypotheses and pilot studies suggesting that cytokines may play an important role in MDD. In this respect, we have investigated the role of NLRP3 inflammasome complex in the maturation of caspase-1 and the processing of its substrates, IL-1ß and IL-18, in blood cells from MDD patients. METHODS: Forty MDD patients were selected for this study, twenty without treatments and twenty treated with amitriptyline, a common tricyclic antidepressant. Blood samples from twenty healthy volunteers were included in the study. The inflammasome activation was studied by Western blot and real-time PCR of NLRP3 and caspase 1 and serum levels of IL-1ß and 18. RESULTS: We observed increased gene expression of NLRP3 and caspase-1 in blood cells, and increased serum levels of IL-1ß and IL-18 in non-treated patients. IL-1ß and IL-18 correlated with Beck Depression Inventory (BDI) scores of MDD patients. Interestingly, amitriptyline treatment reduced NLRP3 and caspase-1 gene expression, and IL-1ß and IL-18 serum levels. As it is well established that oxidative stress is associated with NLRP3 inflammasome activation, we next studied mitochondrial ROS and lipid peroxidation (LPO) levels in MDD patients. Increased levels of mitochondrial ROS and LPO were observed in MDD patients, however oxidative damage was higher in MDD patients treated with amitriptyline. CONCLUSIONS: These findings provide new insight into the pathogenesis of MDD and the effects of amitriptyline treatment on NLRP3 inflammasome activation and IL-1ß and IL-18 serum levels.


Assuntos
Proteínas de Transporte/metabolismo , Transtorno Depressivo Maior/sangue , Inflamassomos/metabolismo , Interleucina-18/sangue , Interleucina-1beta/sangue , Leucócitos Mononucleares/metabolismo , Caspase 1/metabolismo , Transtorno Depressivo Maior/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo
7.
Biomolecules ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786005

RESUMO

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Assuntos
Fibroblastos , Glucosídeos , Mitocôndrias , Doenças Mitocondriais , Niacinamida , Estilbenos , Resposta a Proteínas não Dobradas , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Glucosídeos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Niacinamida/farmacologia , Fenótipo , Estilbenos/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator G para Elongação de Peptídeos/efeitos dos fármacos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo
8.
Dev Dyn ; 241(11): 1808-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22911573

RESUMO

BACKGROUND: The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. RESULTS: We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, ß, and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, ß3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. CONCLUSIONS: Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Ectoderma/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Ectoderma/embriologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Integrinas/genética , Laminina/genética , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895830

RESUMO

The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.

10.
Metabolites ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36984858

RESUMO

Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Therefore, therapies aiming to improve mitochondrial function are promising approaches for neurodegeneration. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. In this review, we will discuss the controversial use of antibiotics as potential therapies in neurodegenerative diseases.

11.
Biomolecules ; 13(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136659

RESUMO

Mitochondria play a key role in cellular functions, including energy production and oxidative stress regulation. For this reason, maintaining mitochondrial homeostasis and proteostasis (homeostasis of the proteome) is essential for cellular health. Therefore, there are different mitochondrial quality control mechanisms, such as mitochondrial biogenesis, mitochondrial dynamics, mitochondrial-derived vesicles (MDVs), mitophagy, or mitochondrial unfolded protein response (mtUPR). The last item is a stress response that occurs when stress is present within mitochondria and, especially, when the accumulation of unfolded and misfolded proteins in the mitochondrial matrix surpasses the folding capacity of the mitochondrion. In response to this, molecular chaperones and proteases as well as the mitochondrial antioxidant system are activated to restore mitochondrial proteostasis and cellular function. In disease contexts, mtUPR modulation holds therapeutic potential by mitigating mitochondrial dysfunction. In particular, in the case of neurodegenerative diseases, such as primary mitochondrial diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), or Friedreich's Ataxia (FA), there is a wealth of evidence demonstrating that the modulation of mtUPR helps to reduce neurodegeneration and its associated symptoms in various cellular and animal models. These findings underscore mtUPR's role as a promising therapeutic target in combating these devastating disorders.


Assuntos
Doenças Mitocondriais , Doenças Neurodegenerativas , Animais , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Envelhecimento , Resposta a Proteínas não Dobradas
12.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077612

RESUMO

Despite advances in recent years in the study of the molecular profile of sporadic colorectal cancer (sCRC), the specific genetic events that lead to increased aggressiveness or the development of the metastatic process of tumours are not yet clear. In previous studies of the gene expression profile (GEP) using a high-density array (50,000 genes and 6000 miRNAs in a single assay) in sCRC tumours, we identified a 28-gene signature that was found to be associated with an adverse prognostic value for predicting patient survival. Here, we analyse the differential expression of these 28 genes for their possible association with tumour local aggressiveness and metastatic processes in 66 consecutive sCRC patients, followed for >5 years, using the NanoString nCounter platform. The global transcription profile (expression levels of the 28 genes studied simultaneously) allowed us to discriminate between sCRC tumours and nontumoral colonic tissues. Analysis of the biological and functional significance of the dysregulated GEPs observed in our sCRC tumours revealed 31 significantly altered canonical pathways. Among the most commonly altered pathways, we observed the increased expression of genes involved in signalling pathways and cellular processes, such as the PI3K-Akt pathway, the interaction with the extracellular matrix (ECM), and other functions related to cell signalling processes (SRPX2). From a prognostic viewpoint, the altered expression of BST2 and SRPX2 genes were the only independent variables predicting for disease-free survival (DFS). In addition to the pT stage at diagnosis, dysregulated transcripts of ADH1B, BST2, and FER1L4 genes showed a prognostic impact on OS in the multivariate analysis. Based on the altered expression of these three genes, a scoring system was built to stratify patients into low-, intermediate-, and high-risk groups with significantly different 5-year OS rates: 91%, 83%, and 52%, respectively. The prognostic impact was validated in two independent series of sCRC patients from the public GEO database (n = 562 patients). In summary, we show a strong association between the altered expression of three genes and the clinical outcome of sCRC patients, making them potential markers of suitability for adjuvant therapy after complete tumour resection. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers because the number of patients analysed remains small.

13.
J Gastrointest Oncol ; 12(2): 900-905, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012678

RESUMO

Intraluminal shedding of tumor cells is a rare infrequent sporadic colorectal cancer (sCRC) mechanism of spreading. Less than 30 cases of sCRC metastasis into anal fistula have been reported. Here, we study a 72-year-old male with an adenocarcinoma arising in an anal fistula. Subsequent studies revealed another tumor in the rectum without distant metastatic disease; therefore, a curative-intent abdominoperineal resection was performed. The histologic study showed a moderately differentiated adenocarcinoma in both locations. No perineural or lymphovascular invasion was observed, and all the lymphatic nodes resected were negative for malignancy. Both tumors showed positive CK20 and negative CK7 immunostaining, but KRAS G12D mutation was only detected in the rectal tumor. After those conventional studies, a cytogenetic profile of both tumors was performed by interphase fluorescence in situ hybridization (iFISH) techniques. The FISH study displayed an identical genetic profile in both tumors, loss of the chromosomes 8 and 18q, and no alteration in chromosome 7 and 13q. Based on pathological and genetic findings, we established the same clonal origin of both tumors. Currently, the diagnosis of an intraluminal CRC metastasis relies on histologic and immunohistochemistry findings. We suggest that genetic studies at the individual cell level by FISH techniques may be useful in order to differentiate synchronous from intraluminal metastasis.

14.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202891

RESUMO

Administering preoperative radiochemotherapy (RCT) in stage II-III tumors to locally advanced rectal carcinoma patients has proved to be effective in a high percentage of cases. Despite this, 20-30% of patients show no response or even disease progression. At present, preoperative response is assessed by a combination of imaging and tumor regression on histopathology, but recent studies suggest that various genetic abnormalities may be associated with the sensitivity or resistance of rectal cancer tumor cells to neoadjuvant therapy. In the present study we investigated the relationship between genetic lesions detected by high-density single-nucleotide polymorphisms (SNP) arrays 6.0 and response to neoadjuvant RCT, evaluated according to Dworak criteria in 39 rectal cancer tumors before treatment. The highest frequency of copy-number (CN) losses detected corresponded to chromosomes 18q (n = 27; 69%), 1p (n = 22; 56%), 15q (n = 19; 49%), 8p (n = 18; 48%), 4q (n = 17; 46%), and 22q (n = 17; 46%); in turn, CN gains more frequently involved chromosomes 20p (n = 22; 56%), 8p (n = 20; 51%), and 15q (n = 16; 41%). There was a significant association between alterations in the 1p, 3q, 7q, 12p, 17q, 20p, and 22q chromosomal regions and the degree of response to therapy prior to surgery. However, 4q, 15q11.1, and 15q14 chromosomal region alterations were identified as important by five prediction algorithms, i.e., those with the greatest influence on predicting the tumor response to treatment with preoperative RCT. Multivariate analysis of prognostic factors showed that gains on 15q11.1 and carcinoembryonic antigen (CEA) levels serum at diagnosis were the only independent variables predicting disease-free survival (DFS). Lymph node involvement also showed a prognostic impact on overall survival (OS) in the multivariate analysis. A deep-learning-based algorithm showed a 100% success rate in predicting both DFS and OS at 60 months after diagnosis of the disease. In summary, our results indicate the existence of an association between tumor genetic abnormalities at diagnosis, response to neoadjuvant therapy, and survival of patients with locally advanced rectal cancer. In addition to the clinical and biological characteristics of locally advanced rectal cancer patients, these could be used in the future as therapeutic and prognostic biomarkers, to identify patients sensitive or resistant to preoperative treatment, helping guide therapeutic decision-making. Additional prospective studies in larger series of patients are required to confirm the clinical utility of the newly identified biomarkers.

15.
Stem Cell Res ; 53: 102338, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34087982

RESUMO

The human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Neuroaxonais , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Fosfolipases A2 do Grupo VI , Humanos , Fator 4 Semelhante a Kruppel , Mutação
16.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072782

RESUMO

Sporadic Colorectal Cancer (sCRC) is the third leading cause of cancer death in the Western world, and the sCRC patients presenting with synchronic metastasis have the poorest prognosis. Genetic alterations accumulated in sCRC tumor cells translate into mutated proteins and/or abnormal protein expression levels, which contribute to the development of sCRC. Then, the tumor-associated proteins (TAAs) might induce the production of auto-antibodies (aAb) via humoral immune response. Here, Nucleic Acid Programmable Protein Arrays (NAPPArray) are employed to identify aAb in plasma samples from a set of 50 sCRC patients compared to seven healthy donors. Our goal was to establish a systematic workflow based on NAPPArray to define differential aAb profiles between healthy individuals and sCRC patients as well as between non-metastatic (n = 38) and metastatic (n = 12) sCRC, in order to gain insight into the role of the humoral immune system in controlling the development and progression of sCRC. Our results showed aAb profile based on 141 TAA including TAAs associated with biological cellular processes altered in genesis and progress of sCRC (e.g., FSCN1, VTI2 and RPS28) that discriminated healthy donors vs. sCRC patients. In addition, the potential capacity of discrimination (between non-metastatic vs. metastatic sCRC) of 7 TAAs (USP5, ML4, MARCKSL1, CKMT1B, HMOX2, VTI2, TP53) have been analyzed individually in an independent cohort of sCRC patients, where two of them (VTI2 and TP53) were validated (AUC ~75%). In turn, these findings provided novel insights into the immunome of sCRC, in combination with transcriptomics profiles and protein antigenicity characterizations, wich might lead to the identification of novel sCRC biomarkers that might be of clinical utility for early diagnosis of the tumor. These results explore the immunomic analysis as potent source for biomarkers with diagnostic and prognostic value in CRC. Additional prospective studies in larger series of patients are required to confirm the clinical utility of these novel sCRC immunomic biomarkers.

17.
Anticancer Drugs ; 21(10): 932-44, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20847644

RESUMO

Oxidative therapy is a relatively new anticancer strategy based on the induction of high levels of oxidative stress, achieved by increasing intracellular reactive oxygen species (ROS) and/or by depleting the protective antioxidant machinery of tumor cells. We focused our investigations on the antitumoral potential of amitriptyline in three human tumor cell lines: H460 (lung cancer), HeLa (cervical cancer), and HepG2 (hepatoma); comparing the cytotoxic effect of amitriptyline with three commonly used chemotherapeutic drugs: camptothecin, doxorubicin, and methotrexate. We evaluated apoptosis, ROS production, mitochondrial mass and activity, and antioxidant defenses of tumor cells. Our results show that amitriptyline produces the highest cellular damage, inducing high levels of ROS followed by irreversible serious mitochondrial damage. Interestingly, an unexpected decrease in antioxidant machinery was observed only for amitriptyline. In conclusion, based on the capacity of generating ROS and inhibiting antioxidants in tumor cells, amitriptyline emerges as a promising new drug to be tested for anticancer therapy.


Assuntos
Amitriptilina/farmacologia , Carcinoma Hepatocelular/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Neoplasias do Colo do Útero/terapia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Reposicionamento de Medicamentos , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Especificidade de Órgãos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
18.
Med Clin (Barc) ; 135(14): 644-6, 2010 Nov 13.
Artigo em Espanhol | MEDLINE | ID: mdl-20591450

RESUMO

OBJECTIVE: Fibromyalgia (FM) is a chronic pain syndrome of unknown etiology, which affects predominantly women. Among the alterations that have been implicated in the pathophysiology of FM, there have been postulated disturbances in serotonin levels and metabolism, and their implication in symptoms. The aim of the present study was to assess the correlation levels between low levels of serotonin and severity of symptoms in FM. PATIENTS AND METHODS: We determined serotonin levels using an ELISA kit in serum from 38 FM patients and 25 healthy individual. Results were correlated with symptoms regarding pain, depression, impact of disease (FIQ) and age. RESULTS: Serotonin levels were decreased by 45% compared to healthy individual. An important correlation was observed between serotonin levels and predetermined parameters of pain, depression, FIQ and age. CONCLUSION: Serotonin levels are correlated with severity of FM. In addition, there is an interesting correlation between serotonin levels and age of patients.


Assuntos
Fibromialgia/sangue , Serotonina/deficiência , Adulto , Envelhecimento/metabolismo , Comorbidade , Depressão/epidemiologia , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Fibromialgia/epidemiologia , Fibromialgia/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Serotonina/sangue , Índice de Gravidade de Doença
19.
Sci Rep ; 10(1): 4662, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170146

RESUMO

Sporadic colorectal cancer (sCRC) is the third most frequent cancer worldwide and the second most common cause of cancer-related deaths (mainly due metastatic dissemination). We investigated the immunohistochemical expression of frequently altered proteins in primary tumors from 51 patients (25 liver metastatic and 26 non-metastatic cases) with a median 103 months follow-up (103 months). We evaluated EGFR copy number (using SNP arrays and FISH) and its expression and regulation (by mRNA and miRNA arrays). We found differences between metastatic and non-metastatic sCRCs for MLH1 (p = 0.05), PMS2 (p = 0.02), CEA (p < 0.001) and EGFR (p < 0.001) expression. EGFR expression was associated with lymph node metastases (p = 0.001), liver metastases at diagnosis (p < 0.001), and advanced stage (p < 0.001). There were associations between EGFR expression-, EGFR gene copy number- and EGFR mRNA levels. We found potential interactions of two miRNAs targeting EGFR expression, (miR-134 and miR-4328, in non-metastatic and metastatic tumors, respectively). EGFR expression was associated with a worse outcome (p = 0.005). Multivariate analysis of prognostic factors for overall survival identified that, the expression of EGFR expression (p = 0.047) and pTNM stage (p < 0.001) predicted an adverse outcome. EGFR expression could be regulated by amplification or polysomies (in metastatic tumors), or miRNAs (miRNA-134, in non-metastatic tumors). EGFR expression in sCRC appears to be related to metastases and poor outcome.


Assuntos
Neoplasias Colorretais/patologia , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
20.
Diseases ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202892

RESUMO

Rare diseases are those that have a low prevalence in the population (less than 5 individuals per 10,000 inhabitants). However, infrequent pathologies affect a large number of people, since according to the World Health Organization (WHO), there are about 7000 rare diseases that affect 7% of the world's population. Many patients with rare diseases have suffered the consequences of what is called the diagnostic odyssey, that is, extensive and prolonged serial tests and clinical visits, sometimes for many years, all with the hope of identifying the etiology of their disease. For patients with rare diseases, obtaining the genetic diagnosis can mean the end of the diagnostic odyssey, and the beginning of another, the therapeutic odyssey. This scenario is especially challenging for the scientific community, since more than 90% of rare diseases do not currently have an effective treatment. This therapeutic failure in rare diseases means that new approaches are necessary. Our research group proposes that the use of precision or personalized medicine techniques can be an alternative to find potential therapies in these diseases. To this end, we propose that patients' own cells can be used to carry out personalized pharmacological screening for the identification of potential treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA