Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(12): 4245-4256, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913208

RESUMO

There are many treatments for nasopharyngeal carcinoma (NPC), but none of them are very effective. Radiotherapy is used extensively in NPC treatment, but radioresistance is a major problem. Graphene oxide (GO) has been previously studied in cancer treatment, and this study is aimed to explore its role in radiosensitization of NPC. Therefore, graphene oxide nanosheets were prepared, and the relationship between GO and radioresistance was explored. The GO nanosheets were synthesized by a modified Hummers' method. The morphologies of the GO nanosheets were characterized by field-emission environmental scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The morphological changes and radiosensitivity of C666-1 and HK-1 cells with or without the GO nanosheets were observed by an inverted fluorescence microscopy and laser scanning confocal microscopy (LSCM). Colony formation assay and Western Blot were applied for analysis of NPC radiosensitivity. The as-synthesized GO nanosheets have lateral dimensions (sizes ∼1 µm) and exhibit a thin wrinkled two-dimensional lamellar structure with slight folds and crimped edges (thickness values ∼1 nm). C666-1 cells with the GO was significantly changed the morphology of cells postirradiation. The full field of view visualized by a microscope showed the shadow of dead cells or cell debris. The synthesized graphene oxide nanosheets inhibited cell proliferation, promoted cell apoptosis, and inhibited the expression of Bcl-2 in C666-1 and HK-1 cells but increased the level of Bax. The GO nanosheets could affect the cell apoptosis and reduce the pro-survival protein Bcl-2 related to the intrinsic mitochondrial pathway. The GO nanosheets could enhance radiosensitivity, which might be a radioactive material in NPC cells.


Assuntos
Grafite , Neoplasias Nasofaríngeas , Humanos , Grafite/farmacologia , Grafite/química , Microscopia Eletrônica de Transmissão , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia
2.
Int J Biol Sci ; 18(5): 1878-1895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342334

RESUMO

The biological functions of exosomes and microRNAs (miRs) in nasopharyngeal carcinoma (NPC) remain largely unexplored. Here, miR-197-3p was screened and identified, and whose level was reduced in serum and exosomes of patients with NPC. MiR-197-3p might be a good diagnostic and prognostic indicator. Our data showed that miR-197-3p expression was closely related to radioresistance, apoptosis, proliferation, migration, and survival of NPC. Inhibition of miR-197-3p expression in vitro could promote the proliferation and migration of NPC cells, while promotion of miR-197-3p expression in vivo could significantly inhibit the growth and enhance the radiosensitivity of NPC cells. From the perspective of mechanism, miR-197-3p could inhibit AKT/mTOR phosphorylation activation, inhibit an activated pathway of AKT/mTOR, target Heat Shock 70-kDa Protein 5(HSPA5) related to endoplasmic reticulum homeostasis, inhibit HSPA5-mediated autophagy, and reverse the radioresistance of NPC. Interestingly, exosomal miR-197-3p (EXO-miR-197-3p) reduced the proliferation and migration potential of NPC cells in vitro, and tumor growth and radioresistance of NPC cells in vivo. EXO-miR-197-3p inhibited NPC progression and radioresistance by regulating AKT/mTOR phosphorylation activation and HSPA5-mediated autophagy. In conclusion, our results highlight the potential of EXO-miR-197-3p as an effective radiosensitizer and therapeutic agent for refractory NPC.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Radiossensibilizantes , Autofagia/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA