Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; 7(6): e0093422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36342125

RESUMO

The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth. IMPORTANCE The microbiota inhabiting the rhizosphere, the thin layer of soil surrounding plant roots, can promote the growth, development, and health of their host plants. Previous research indicated that differences in the genetic composition of the host plant coincide with variations in the composition of the rhizosphere microbiota. This is particularly evident when looking at the microbiota associated with input-demanding modern cultivated varieties and their wild relatives, which have evolved under marginal conditions. However, the functional significance of these differences remains to be fully elucidated. We investigated the rhizosphere microbiota of wild and cultivated genotypes of the global crop barley and determined that nutrient conditions limiting plant growth amplify the host control on microbes at the root-soil interface. This is reflected in a plant- and genotype-dependent functional specialization of the rhizosphere microbiota, which appears to be required for optimal plant growth. These findings provide novel insights into the significance of the rhizosphere microbiota for plant growth and sustainable agriculture.


Assuntos
Hordeum , Microbiota , Rizosfera , Hordeum/microbiologia , Nitrogênio , Raízes de Plantas , Microbiota/genética , Solo , Genótipo
2.
Nat Commun ; 13(1): 3443, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710760

RESUMO

A prerequisite to exploiting soil microbes for sustainable crop production is the identification of the plant genes shaping microbiota composition in the rhizosphere, the interface between roots and soil. Here, we use metagenomics information as an external quantitative phenotype to map the host genetic determinants of the rhizosphere microbiota in wild and domesticated genotypes of barley, the fourth most cultivated cereal globally. We identify a small number of loci with a major effect on the composition of rhizosphere communities. One of those, designated the QRMC-3HS, emerges as a major determinant of microbiota composition. We subject soil-grown sibling lines harbouring contrasting alleles at QRMC-3HS and hosting contrasting microbiotas to comparative root RNA-seq profiling. This allows us to identify three primary candidate genes, including a Nucleotide-Binding-Leucine-Rich-Repeat (NLR) gene in a region of structural variation of the barley genome. Our results provide insights into the footprint of crop improvement on the plant's capacity of shaping rhizosphere microbes.


Assuntos
Hordeum , Microbiota , Bactérias/genética , Genes de Plantas/genética , Hordeum/genética , Microbiota/genética , Raízes de Plantas/genética , Rizosfera , Solo/química , Microbiologia do Solo
3.
Sci Rep ; 10(1): 12916, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737353

RESUMO

The microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots, plays a critical role in plant's adaptation to the environment. Domestication and breeding selection have progressively differentiated the microbiota of modern crops from the ones of their wild ancestors. However, the impact of eco-geographical constraints faced by domesticated plants and crop wild relatives on recruitment and maintenance of the rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (Hordeum vulgare) genotypes grown in an agricultural soil under controlled environmental conditions. We demonstrated the enrichment of individual bacteria mirrored the distinct eco-geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a stronger genotype effect on the rhizosphere microbiota when compared with wild barley genotypes adapted to desert environments with a preferential enrichment for members of Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant, correlation between microbiota diversity and host genomic diversity. Our results revealed a footprint of the host's adaptation to the environment on the assembly of the bacteria thriving at the root-soil interface. In the tested conditions, this recruitment cue layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part, is encoded by the barley genome. This knowledge will be critical to design experimental approaches aimed at elucidating the recruitment cues of the barley microbiota across a range of soil types.


Assuntos
Actinobacteria , Produtos Agrícolas , Hordeum , Microbiota/fisiologia , Raízes de Plantas , Rizosfera , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
4.
Front Plant Sci ; 8: 1094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694814

RESUMO

The rhizosphere, the thin layer of soil surrounding and influenced by plant roots, defines a distinct and selective microbial habitat compared to unplanted soil. The microbial communities inhabiting the rhizosphere, the rhizosphere microbiota, engage in interactions with their host plants which span from parasitism to mutualism. Therefore, the rhizosphere microbiota emerges as one of the determinants of yield potential in crops. Studies conducted with different plant species have unequivocally pointed to the host plant as a driver of the microbiota thriving at the root-soil interface. Thus far, the host genetic traits shaping the rhizosphere microbiota are not completely understood. As root hairs play a critical role in resource exchanges between plants and the rhizosphere, we hypothesized that they can act as a determinant of the microbiota thriving at the root-soil interface. To test this hypothesis, we took advantage of barley (Hordeum vulgare) mutant lines contrasting for their root hair characteristics. Plants were grown in two agricultural soils, differentiating in their organic matter contents, under controlled environmental conditions. At early stem elongation rhizosphere specimens were collected and subjected to high-resolution 16S rRNA gene profiling. Our data revealed that the barley rhizosphere microbiota is largely dominated by members of the phyla Bacteroidetes and Proteobacteria, regardless of the soil type and the root hair characteristics of the host plant. Conversely, ecological indices calculated using operational taxonomic units (OTUs) presence, abundance, and phylogeny revealed a significant impact of root hair mutations on the composition of the rhizosphere microbiota. In particular, our data indicate that mutant plants host a reduced-complexity community compared to wild-type genotypes and unplanted soil controls. Congruently, the host genotype explained up to 18% of the variation in ecological distances computed for the rhizosphere samples. Importantly, this effect is manifested in a soil-dependent manner. A closer inspection of the sequencing profiles revealed that the root hair-dependent diversification of the microbiota is supported by a taxonomically narrow group of bacteria, with a bias for members of the orders Actinomycetales, Burkholderiales, Rhizobiales, Sphingomonadales, and Xanthomonadales. Taken together, our results indicate that the presence and function of root hairs are a determinant of the bacterial community thriving in the rhizosphere and their perturbations can markedly impact on the recruitment of individual members of the microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA