RESUMO
This work describes a sapphire cryo-applicator with the ability to sense tissue freezing depth during cryosurgery by illumination of tissue and analyzing diffuse optical signals in a steady-state regime. The applicator was manufactured by the crystal growth technique and has several spatially resolved internal channels for accommodating optical fibers. The method of reconstructing freezing depth proposed in this work requires one illumination and two detection channels. The analysis of the detected intensities yields the estimation of the time evolution of the effective attenuation coefficient, which is compared with the theoretically calculated values obtained for a number of combinations of tissue parameters. The experimental test of the proposed applicator and approach for freezing depth reconstruction was performed using gelatin-based tissue phantom and rat liver tissue in vivo. It revealed the ability to estimate depth up to 8 mm. The in vivo study confirmed the feasibility of the applicator to sense the freezing depth of living tissues despite the possible diversity of their optical parameters. The results justify the potential of the described design of a sapphire instrument for cryosurgery.
Assuntos
Óxido de Alumínio , Criocirurgia , Congelamento , Fígado , Imagens de Fantasmas , Animais , Criocirurgia/métodos , Ratos , Fígado/cirurgia , Fígado/diagnóstico por imagem , Óxido de Alumínio/químicaRESUMO
Herein, we describe the synthesis of pH-sensitive lipophilic colchicine prodrugs for liposomal bilayer inclusion, as well as preparation and characterization of presumably stealth PEGylated liposomes with above-mentioned prodrugs. These formulations liberate strongly cytotoxic colchicinoid derivatives selectively under slightly acidic tumor-associated conditions, ensuring tumor-targeted delivery of the compounds. The design of the prodrugs is addressed to pH-triggered release of active compounds in the slight acidic media, that corresponds to tumor microenvironment, while keeping sufficient stability of the whole formulation at physiological pH. Correlations between the structure of the conjugates, their hydrolytic stability, colloidal stability, ability of the prodrug retention in the lipid bilayer are described. Several formulations were found promising for further development and in vivo investigations.
RESUMO
OBJECTIVES: The development of compact diagnostic probes and instruments with an ability to direct access to organs and tissues and integration of these instruments into surgical workflows is an important task of modern physics and medicine. The need for such tools is essential for surgical oncology, where intraoperative visualization and demarcation of tumor margins define further prognosis and survival of patients. In this paper, the possible solution for this intraoperative imaging problem is proposed and its feasibility to detect tumorous tissue is studied experimentally. METHODS: For this aim, the sapphire scalpel was developed and fabricated using the edge-defined film-fed growth technique aided by mechanical grinding, polishing, and chemical sharpening of the cutting edge. It possesses optical transparency, mechanical strength, chemical inertness, and thermal resistance alongside the presence of the as-grown hollow capillary channels in its volume for accommodating optical fibers. The rounding of the cutting edge exceeds the same for metal scalpels and can be as small as 110 nm. Thanks to these features, sapphire scalpel combines tissue dissection with light delivering and optical diagnosis. The feasibility for the tumor margin detection was studied, including both gelatin-based tissue phantoms and ex vivo freshly excised specimens of the basal cell carcinoma from humans and the glioma model 101.8 from rats. These tumors are commonly diagnosed either non-invasively or intraoperatively using different modalities of fluorescence spectroscopy and imaging, which makes them ideal candidates for our feasibility test. For this purpose, fiber-based spectroscopic measurements of the backscattered laser radiation and the fluorescence signals were carried out in the visible range. RESULTS: Experimental studies show the feasibility of the proposed sapphire scalpel to provide a 2-mm-resolution of the tumor margins' detection, along with an ability to distinguish the tumor invasion region, which results from analysis of the backscattered optical fields and the endogenous or exogenous fluorescence data. CONCLUSIONS: Our findings justified a strong potential of the sapphire scalpel for surgical oncology. However, further research and engineering efforts are required to optimize the sapphire scalpel geometry and the optical diagnosis protocols to meet the requirements of oncosurgery, including diagnosis and resection of neoplasms with different localizations and nosologies.
Assuntos
Óxido de Alumínio , Neoplasias , Animais , Humanos , Lasers , Margens de Excisão , Fibras Ópticas , Imagens de Fantasmas , RatosRESUMO
We describe azophenylindane based molecular motors (aphin-switches) which have two different rotamers of trans-configuration and four different rotamers of cis-configuration. The behaviors of these motors were investigated both experimentally and computationally. The conversion of aphin-switch does not yield single isomer but a mixture of these. Although the trans to cis conversion leads to the increase of the system entropy some of the cis-rotamers can directly convert to each other while others should convert via trans-configuration. The motion of aphin-switches resembles the work of a mixing machine with indane group serving as a base and phenol group serving as a beater. The aphin-switches presented herein may provide a basis for promising applications in advanced biological systems or particularly in cases where on demand disordering of molecular packing has value, such as lipid bilayers.
Assuntos
Indanos , Bicamadas Lipídicas , Isomerismo , FenóisRESUMO
Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood-brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0â1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310-7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740-6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.
Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipídeos/química , Nanopartículas/química , Polímeros/química , Animais , Doxorrubicina/farmacocinética , Feminino , Ratos , Ratos Sprague-DawleyRESUMO
Bacterial infections are a growing public health threat with carbapenem-resistant Pseudomonas aeruginosa being classified as a Priority 1 critical threat by the World Health Organization. Antibody-based therapeutics can serve as an alternative and in some cases supplement antibiotics for the treatment of bacterial infections. The glycans covering the bacterial cell surface have been proposed as intriguing targets for binding by antibodies; however, antibodies that can engage with high affinity and specificity with glycans are much less common compared to antibodies that engage with protein antigens. In this study, we sought to characterize an antibody that targets a conserved glycan epitope on the surface of Pseudomonas. First, we characterized the breadth of binding of VSX, demonstrating that the VSX is specific to Pseudomonas but can bind across multiple serotypes of the organism. Next, we provide insight into how VSX engages with its target epitope, using a combination of biolayer interferometry and nuclear magnetic resonance, and verify our results using site-directed mutagenesis experiments. We demonstrate that the antibody, with limited somatic hypermutation of the complementarity-determining regions (CDRs) and with a characteristic set of arginines within the CDRs, specifically targets the conserved inner core of Pseudomonas lipopolysaccharides. Our results provide important additional context to antibody-glycan contacts and provide insight useful for the construction of vaccines and therapeutics against Pseudomonas aeruginosa, an important human pathogen.
Assuntos
Anticorpos Antibacterianos/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismoRESUMO
Archaea are prokaryotic microorganisms famous for their ability to adapt to extreme environments, including low and high temperatures. Archaeal lipids often are macrocycles with two polar heads and a hydrophobic core that contains methyl groups and in-line cycles. Here we present the design of novel general-purpose surfactants that have inherited features of archaeal lipids. These are C12 and C14 carboxylic acids containing in-line cyclopentanes. The cyclopentanes disturb the chain packing, which results in remarkable expansion of the operational range of the surfactant into the low-temperature region. We report synthesis and properties of these novel archaea-like surfactants and details of their chain packing derived from thermodynamics model predictions, molecular dynamics simulations, and experimental data on CMC and Krafft points.
Assuntos
Archaea/metabolismo , Ciclopentanos/química , Tensoativos/química , Archaea/química , Ciclopentanos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Lipídeos/química , Simulação de Dinâmica Molecular , TermodinâmicaRESUMO
Archaeal lipids ensure unprecedented stability of archaea membranes in extreme environments. Here, we incorporate a characteristic structural feature of an archaeal lipid, the cyclopentane ring, into hydrocarbon chains of a short-chain (C12) phosphatidylcholine to explore whether the insertion would allow such a lipid (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, diC12cp-PC) to form stable bilayers at room temperature. According to fluorescence-based assays, in water diC12cp-PC formed liquid-crystalline bilayers at room temperature. Liposomes produced from diC12cp-PC retained calcein for over a week when stored at +4 °C. diC12cp-PC could also form model bilayer lipid membranes that were by an order of magnitude more stable to electrical breakdown than egg PC membranes. Molecular dynamics simulation showed that the cyclopentane fragment fixes five carbon atoms (or four C-C bonds), which is compensated by the higher mobility of the rest of the chain. This was found to be the reason for the remarkable stability of the diC12cp-PC bilayer: restricted conformational mobility of a chain segment increases the membrane bending modulus (compared to a normal hydrocarbon chain of the same length). Here, higher stiffness practically does not affect the line tension of a membrane pore edge. Rather it makes it more difficult for diC12cp-PC to rearrange in order to line the edge of a hydrophilic pore; therefore, fewer pores are formed.
Assuntos
Archaea/química , Ciclopentanos/química , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fosfolipídeos/química , Eletricidade/efeitos adversos , Bicamadas Lipídicas/efeitos da radiação , Lipossomos/química , Lipossomos/efeitos da radiação , Conformação Molecular/efeitos da radiação , Água/químicaRESUMO
Rotavirus A is a dynamically evolving pathogen causing acute gastroenteritis in children during the first years of life. In the present study, we conducted a phylodynamic analysis based on the complete sequences of 11 segments of rotaviruses with the G4P[8] and G2P[4] genotypes isolated in Russia in 2017. Since rotavirus has a segmented genome, our analysis was performed using the Bayesian approach based on separate samples of nucleotide sequences for each gene of the strains studied. For the strain with the genotype G4P[8], the most likely geographical locations of the nearest common ancestor were Russia (VP7, VP4, VP6), China (VP1), Thailand (VP3), Belgium (NSP1), Hungary (VP2, NSP2, NSP3), Italy (NSP4) and Japan (NSP5). For the strain with the G2P[4] genotype, India (VP7, VP4, VP6, NSP1, NSP4), Malawi (VP2, NSP2, NSP3), Australia (VP1), Italy (NSP5) and Bangladesh (VP3). The closest common ancestor of the strain with the genotype G4P[8] circulated in 2001-2012, depending on the gene being analyzed. For the strain with the G2P[4] genotype, the closest common ancestor dates from 2006 to 2013.
Assuntos
Genoma Viral , RNA Viral , Infecções por Rotavirus/virologia , Rotavirus , Proteínas Virais/genética , Pré-Escolar , Genótipo , Humanos , Filogenia , Rotavirus/classificação , Rotavirus/genética , Rotavirus/isolamento & purificação , Federação RussaRESUMO
Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.
Assuntos
Colchicina/química , Lipossomos , Fosfolipídeos/química , Pró-Fármacos/química , Fenômenos Biofísicos , Proliferação de Células/efeitos dos fármacos , Colchicina/farmacologia , Fluoresceínas/química , Humanos , Bicamadas Lipídicas , Fosfolipases A2/metabolismoRESUMO
Due to the biological properties of heparin and low-molecular-weight heparin (LMWH), continuous advances in elucidation of their microheterogeneous structure and discovery of novel structural peculiarities are crucial. Effective strategies for monitoring manufacturing processes and assessment of more restrictive specifications, as imposed by the current regulatory agencies, need to be developed. Hereby, we apply an efficient heparanase-based strategy to assert the structure of two major isomeric octasaccharides of dalteparin and investigate the tetrasaccharides arising from antithrombin binding region (ATBR) of bovine mucosal heparin. Heparanase, especially when combined with other sample preparation methods (e.g., size exclusion, affinity chromatography, heparinase depolymerization), was shown to be a powerful tool providing relevant information about heparin structural peculiarities. The applied approach provided direct evidence that oligomers bearing glucuronic acid-glucosamine-3-O-sulfate at their nonreducing end represent an important structural signature of dalteparin. When extended to ATBR-related tetramers of bovine heparin, the heparanase-based approach allowed for elucidation of the structure of minor sequences that have not been reported yet. The obtained results are of high importance in the view of the growing interest of regulatory agencies and manufacturers in the development of low-molecular-weight heparin generics as well as bovine heparin as alternative source.
Assuntos
Glucuronidase/química , Heparina/química , Oligossacarídeos/química , Animais , Antitrombinas/química , Sítios de Ligação , Bovinos , Cromatografia Líquida de Alta Pressão , Heparina de Baixo Peso Molecular/química , Estrutura Molecular , Polimerização , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
AvidinOX, the oxidized derivative of Avidin, is a chemically modified glycoprotein, being currently under clinical investigation for targeted delivery of radioactive biotin to inoperable tumors. AvidinOX is produced by 4-hydroxyazobenzene-2-carboxylic acid (HABA)-assisted sodium periodate oxidation of Avidin. The peculiar property of the periodate-generated glycol-split carbohydrate moieties to form Schiff's bases with amino groups of the tissue proteins allows to achieve a tissue half-life of 2 weeks compared to 2 h of native Avidin. Carbohydrate oxidation, along with possible minor amino acid modifications, introduces additional microheterogeneity in the glycoprotein structure, making its characterization even more demanding than for native glycoproteins. Aiming at the elucidation of the effects of oxidation conditions on the AvidinOX protein backbone and sugars, this microheterogeneous glycoprotein derivative was characterized for the first time using a combination of different analytical methods, including colorimetric methods, mass spectrometry, hollow-fiber flow field-flow fractionation with UV and multi-angle laser scattering detection (HF5-UV-MALS), and NMR. The proposed integrated approach reveals structural features of AvidinOX relevant for its biological activity, e.g., oxidized sites within both carbohydrate moieties and protein backbone and conformational stability, and will be considered as an analytical tool for AvidinOX industrial preparations. It is worth noting that this study enriches also the structural data of native Avidin published up-to-date (e.g., glycan structure and distribution, peptide fingerprint, etc.). Graphical abstract Scheme of phenylacetic hydrazide/MALDI-TOF approach for quantification of aldehydes in AvidinOX based on the determination of the number of hydrazone adducts between hydrazide reagent and aldehyde groups of protein.
Assuntos
Aldeídos/análise , Avidina/química , Polissacarídeos/análise , Compostos Azo/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Fenilacetatos/química , Agregados Proteicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Recently, we showed that tetrasaccharide selectin ligand SiaLeX provided targeted delivery of liposomes loaded in the bilayer with melphalan lipophilic prodrug to tumour endothelium followed by severe injury of tumour vessels in a Lewis lung carcinoma model. Here, we study the impact of SiaLeX ligand on the interactions of liposomes with human umbilical vein endothelial cells (HUVEC) using flow cytometry, spectrofluorimetry and confocal microscopy. Liposomes composed of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol ester of melphalan, 8:1:1, by mol, and varying percentages of lipophilic SiaLeX conjugate were labelled with BODIPY-phosphatidylcholine. The increase in SiaLeX content in liposomes led to a proportional increase in their uptake by cytokine-activated cells as opposed to non-activated HUVEC: for 10% SiaLeX liposomes, binding avidity and overall accumulation increased 14- and 6-fold, respectively. The early stages of intracellular traffic of targeted liposomes in the activated cells were monitored by co-localisation with the trackers of organelles. Endocytosis of SiaLeX liposomes occurred mostly via clathrin-independent pathways, which does not contradict the available literature data on E-selectin localisation in the plasma membrane. Using dual fluorescence labelling, with rhodamine-labelled phospholipid and calcein encapsulated at self-quenching concentrations, we found that SiaLeX liposomes undergo rapid (within minutes) internalisation by activated HUVEC accompanied by the disruption of liposomes; non-activated cells consumed a negligible dose of liposomes during at least 1.5h. Our data evidence the selective effect of SiaLeX formulations on activated endothelial cells and indicate their potential for intracellular delivery of melphalan lipophilic prodrug.
Assuntos
Antineoplásicos Alquilantes/metabolismo , Portadores de Fármacos , Endocitose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Antígenos CD15/metabolismo , Lipídeos/química , Melfalan/metabolismo , Antineoplásicos Alquilantes/química , Células Cultivadas , Química Farmacêutica , Diglicerídeos/química , Relação Dose-Resposta a Droga , Selectina E/metabolismo , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Cinética , Antígenos CD15/química , Lipossomos , Melfalan/análogos & derivados , Melfalan/química , Microscopia Confocal , Fosfatidilcolinas/química , Fosfatidilinositóis/química , Antígeno Sialil Lewis X , Espectrometria de Fluorescência , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Oxidized cell-free DNA acts as a stress signal molecule and triggers an adaptive response in human cells. Various membrane DNA recognizing receptors are known as potential sensors for such DNA fragments. In order to clarify which of these sensors are able to interact with cfDNA fragments, circulating in human blood flow in heath and disease, we studied the influence of various cfDNA types on endothelial cells. We incubated these fragments at a physiologically optimal concentration with HUVEC cells for 3-24 h and detected the expression of either TLR9 or AIM2, RIG1 and STING receptors at mRNA and protein levels. We estimated that the activation of both TLR9 and other types of intracellular receptors initiates stress signaling in the endothelium independently. Signal transduction through these receptors activates NOX4 as the main source of ROS production in HUVECs.
Assuntos
DNA/genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , NADPH Oxidase 4 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismoRESUMO
Periodate oxidation followed by borohydride reduction converts the well-known antithrombotics heparin and low-molecular-weight heparins (LMWHs) into their "glycol-split" (gs) derivatives of the "reduced oxyheparin" (RO) type, some of which are currently being developed as potential anti-cancer and anti-inflammatory drugs. Whereas the structure of gs-heparins has been recently studied, details of the more complex and more bioavailable gs-LMWHs have not been yet reported. We obtained RO derivatives of the three most common LMWHs (tinzaparin, enoxaparin, and dalteparin) and studied their structures by two-dimensional nuclear magnetic resonance spectroscopy and ion-pair reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. The liquid chromatography-mass spectrometry (LC-MS) analysis was extended to their heparinase-generated oligosaccharides. The combined NMR/LC-MS analysis of RO-LMWHs provided evidence for glycol-splitting-induced transformations mainly involving internal nonsulfated glucuronic and iduronic acid residues (including partial hydrolysis with formation of "remnants") and for the hydrolysis of the gs uronic acid residues when formed at the non-reducing ends (mainly, in RO-dalteparin). Evidence for minor modifications, such as ring contraction of some dalteparin internal aminosugar residues, was also obtained. Unexpectedly, the N-sulfated 1,6-anhydromannosamine residues at the enoxaparin reducing end were found to be susceptible to the periodate oxidation. In addition, in tinzaparin and enoxaparin, the borohydride reduction converts the hemiacetalic aminosugars at the reducing end to alditols. Typical LC-MS signatures of RO-derivatives of individual LMWH both before and after digestion with heparinases included oligosaccharides generated from the original antithrombin-binding and "linkage" regions.
Assuntos
Dalteparina/química , Enoxaparina/química , Heparina Liase/química , Heparina de Baixo Peso Molecular/química , Boroidretos/química , Cromatografia de Fase Reversa , Dalteparina/análise , Enoxaparina/análise , Ácido Glucurônico/química , Heparina de Baixo Peso Molecular/análise , Hidrólise , Ácido Idurônico/química , Espectroscopia de Ressonância Magnética , Oxirredução , Ácido Periódico/química , TinzaparinaRESUMO
Glioblastoma (GBM) is a highly aggressive human neoplasm with poor prognosis due to its malignancy and therapy resistance. To evaluate the efficacy of antitumor therapy, cell models are used most widely, but they are not as relevant to human GBMs as tissue models of gliomas, closely corresponding to human GBMs in cell heterogeneity. In this work, we compared three different tissue strains of rat GBM 101.8 (induced by DMBA), GBM 11-9-2, and GBM 14-4-5 (induced by ENU). MATERIALS AND METHODS: We estimated different gene expressions by qPCR-RT and conducted Western blotting and histological and morphometric analysis of three different tissue strains of rat GBM. RESULTS: GBM 101.8 was characterized by the shortest period of tumor growth and the greatest number of necroses and mitoses; overexpression of Abcb1, Sox2, Cdkn2a, Cyclin D, and Trp53; and downregulated expression of Vegfa, Pdgfra, and Pten; as well as a high level of HIF-1α protein content. GBM 11-9-2 and GBM 14-4-5 were relevant to low-grade gliomas and characterized by downregulated Mgmt expression; furthermore, a low content of CD133 protein was found in GBM 11-9-2. CONCLUSIONS: GBM 101.8 is a reliable model for further investigation due to its similarity to high-grade human GBMs, while GBM 11-9-2 and GBM 14-4-5 correspond to Grade 2-3 gliomas.
RESUMO
Current therapy protocols fail to cure high-grade gliomas and prevent recurrence. Therefore, novel approaches need to be developed. A re-programing of glioma cell fate is an alternative attractive way to stop tumor growth. The two-step protocol applies the antiproliferative GQ bi-(AID-1-T) and small molecule inducers with BDNF to trigger neural differentiation into terminally differentiated cells, and it is very effective on GB cell cultures. This original approach is a successful example of the "differentiation therapy". To demonstrate a versatility of this approach, in this publication we have extended a palette of cell cultures to gliomas of II, III and IV Grades, and proved an applicability of that version of differential therapy for a variety of tumor cells. We have justified a sequential mode of adding of GQIcombi components to the glioma cells. We have shown a significant retardation of tumor growth after a direct injection of GQIcombi into the tumor in rat brain, model 101/8. Thus, the proposed strategy of influencing on cancer cell growth is applicable to be further translated for therapy use.
RESUMO
One of the urgent tasks of modern medicine is to detect microcirculation disorder during surgery to avoid possible consequences like tissue hypoxia, ischemia, and necrosis. To address this issue, in this article, we propose a compact probe with sapphire tip and optical sensing based on the principle of spatially resolved diffuse reflectance analysis. It allows for intraoperative measurement of tissue effective attenuation coefficient and its alteration during the changes of tissue condition, caused by microcirculation disorder. The results of experimental studies using (1) a tissue-mimicking phantom based on lipid emulsion and hemoglobin and (2) a model of hindlimb ischemia performed in a rat demonstrated the ability to detect rapid changes of tissue attenuation confirming the feasibility of the probe to sense the stressful exposure. Due to a compact design of the probe, it could be useful for rather wide surgical operations and diagnostic purposes as an auxiliary instrument.
RESUMO
Glycol-split (gs) heparins, obtained by periodate oxidation/borohydride reduction of heparin currently used as an anticoagulant and antithrombotic drug, are arousing increasing interest in anticancer and anti-inflammation therapies. These new medical uses are favored by the loss of anticoagulant activity associated with glycol-splitting-induced inactivation of the antithrombin III (AT) binding site. The structure of gs heparins has not been studied yet in detail. In this work, ion pair reversed-phase high-performance liquid chromatography (IPRP-HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) widely used for unmodified heparin has been adapted to the analysis of oligosaccharides generated by digestion with heparinases of gs heparins usually prepared from porcine mucosal heparin. The method was also found to be very effective in analyzing gs derivatives obtained from heparins of different animal and tissue origins. Besides the major 2-O-sulfated disaccharides, heparinase digests of gs heparins contain mainly tetra- and hexasaccharides incorporating one or two gs residues, with distribution patterns typical for individual gs heparins. A heptasulfated, mono-N-acetylated hexasaccharide with two gs residues was shown to be a marker of the gs-modified AT binding site within heparin chains.
Assuntos
Cromatografia Líquida de Alta Pressão , Heparina Liase/metabolismo , Heparina/química , Oligossacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray , Animais , Sequência de Carboidratos , Cromatografia de Fase Reversa , Heparina/metabolismo , Dados de Sequência Molecular , Peso Molecular , Oxirredução , Ácido Periódico/química , SuínosRESUMO
Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.