Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(3): 59, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329578

RESUMO

KEY MESSAGE: The first-time generation of hexaploid triticale plants harbouring variable panels of novel mutations in gene families involved in starch biosynthesis has been achieved by the subgenome-independent multiplexed CRISPR/Cas9-mediated editing.


Assuntos
Sistemas CRISPR-Cas , Triticale , Sistemas CRISPR-Cas/genética , Mutagênese/genética
2.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136646

RESUMO

In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.


Assuntos
Arabidopsis , Triticum , Triticum/genética , Pressão Osmótica , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA