RESUMO
Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.
Assuntos
Infecções Bacterianas , Cloranfenicol , Humanos , Hidrogéis , Antibacterianos , Concentração de Íons de HidrogênioRESUMO
Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.
RESUMO
CRENKA [Cys-Arg-(NMe)Glu-Lys-Ala, where (NMe)Glu refers to N-methyl-Glu], an anti-cancer pentapeptide that induces prostate tumor necrosis and significant reduction in tumor growth, was engineered to increase the resistance to endogenous proteases of its parent peptide, CREKA (Cys-Arg-Glu-Lys-Ala). Considering their high tendency to aggregate, the self-assembly of CRENKA and CREKA into well-defined and ordered structures has been examined as a function of peptide concentration and pH. Spectroscopic studies and atomistic molecular dynamics simulations reveal significant differences between the secondary structures of CREKA and CRENKA. Thus, the restrictions imposed by the (NMe)Glu residue reduce the conformational variability of CRENKA with respect to CREKA, which significantly affects the formation of well-defined and ordered self-assembly morphologies. Aggregates with poorly defined morphology are obtained from solutions with low and moderate CREKA concentrations at pH 4, whereas well-defined dendritic microstructures with fractal geometry are obtained from CRENKA solutions with similar peptide concentrations at pH 4 and 7. The formation of dendritic structures is proposed to follow a two-step mechanism: (1) pseudo-spherical particles are pre-nucleated through a diffusion-limited aggregation process, pre-defining the dendritic geometry, and (2) such pre-nucleated structures coalesce by incorporating conformationally restrained CRENKA molecules from the solution to their surfaces, forming a continuous dendritic structure. Instead, no regular assembly is obtained from solutions with high peptide concentrations, as their dynamics is dominated by strong repulsive peptide-peptide electrostatic interactions, and from solutions at pH 10, in which the total peptide charge is zero. Overall, results demonstrate that dendritic structures are only obtained when the molecular charge of CRENKA, which is controlled through the pH, favors kinetics over thermodynamics during the self-assembly process.
Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Estrutura Secundária de Proteína , Peptídeos/química , Termodinâmica , Peptídeo HidrolasesRESUMO
Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(I)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM). The thermal characterization was carried out in terms of thermogravimetry (TGA) and differential scanning calorimetry (DSC), from which the decomposition onset and glass transition temperatures were determined, respectively. Additionally, mechanical properties of the samples were estimated by stress-strain experiments. Then, their swelling and deswelling properties were systematically examined in PBS buffer, revealing a thermoresponsive behavior that was successfully tested in the release of the anticancer drug doxorubicin. We also confirmed the non-cytotoxicity of these materials, which is a fundamental aspect for their potential use as drug carriers or tissue engineering matrices.
Assuntos
Hidrogéis , Isossorbida , Biomassa , Varredura Diferencial de Calorimetria , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , TermogravimetriaRESUMO
The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.
Assuntos
Infecções por HIV , HIV-1 , Sequência de Aminoácidos , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV , Humanos , Imunoglobulina GRESUMO
Oxidative stress, which occurs when an organism is exposed to an adverse stimulus that results in a misbalance of antioxidant and pro-oxidants species, is the common denominator of diseases considered as a risk factor for SARS-CoV-2 lethality. Indeed, reactive oxygen species caused by oxidative stress have been related to many virus pathogenicity. In this work, simulations have been performed on the receptor binding domain of SARS-CoV-2 spike glycoprotein to study what residues are more susceptible to be attacked by ·OH, which is one of the most reactive radicals associated to oxidative stress. The results indicate that isoleucine (ILE) probably plays a crucial role in modification processes driven by radicals. Accordingly, QM/MM-MD simulations have been conducted to study both the ·OH-mediated hydrogen abstraction of ILE residues and the induced modification of the resulting ILE radical through hydroxylation or nitrosylation reactions. All in all, in silico studies show the importance of the chemical environment triggered by oxidative stress on the modifications of the virus, which is expected to help for foreseeing the identification or development of antioxidants as therapeutic drugs.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Sítios de Ligação , Simulação de Dinâmica Molecular , Ligação Proteica , Estresse OxidativoRESUMO
Pharmacological chaperones (PCs) are low-molecular weight chemical molecules used in patients for the treatment of some rare diseases caused primarily by protein instability. A controlled and on-demand release of PCs via nanoparticles is an alternative for cases in which long treatments are needed and prolonged oral administration could have adverse effects. In this work, pyrimethamine (PYR), which is a potent PC consisting of pyrimidine-2,4-diamine substituted at position 5 by a p-chlorophenyl group and at position 6 by an ethyl group, was successfully loaded in electroresponsive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs). The PYR-loading capacity was 11.4 ± 1.5%, with both loaded and unloaded PEDOT NPs exhibiting similar sizes (215 ± 3 and 203 ± 1 nm, respectively) and net surface charges (-26 ± 7 and -29 ± 6 mV, respectively). In the absence of electrical stimulus, the release of PC from loaded NPs is very low (1.6% in 24 h and 18% in 80 days) in aqueous environments. Instead, electrical stimuli that sustained for 30 min enhanced the release of PYR, which was â¼50% when the voltage was scanned from -0.5 V to 0.5 V (cyclic voltammetry) and â¼35% when a constant voltage of 1.0 V was applied (chronoamperometry).
Assuntos
Nanopartículas , Polímeros , Administração Oral , Preparações de Ação Retardada , HumanosRESUMO
Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 ß-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.
Assuntos
Materiais Biomiméticos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanoestruturas/química , Poliésteres/química , Polímeros/química , Poliestirenos/química , Álcool de Polivinil/química , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/química , Espectroscopia Dielétrica , Condutividade Elétrica , Canais Iônicos/química , Transporte de Íons , Íons/isolamento & purificação , Lisina/química , Relação Estrutura-Atividade , Propriedades de SuperfícieRESUMO
In the present study, a composite made of conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), and a biodegradable hydrogel of poly(aspartic acid) (PASP) were electrochemically interpenetrated with poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PHMeDOT) to prepare a new interpenetrated polymer network (IPN). Different cross-linker and PEDOT MPs contents, as well as different electropolymerization times, were studied to optimize the structural and electrochemical properties. The properties of the new material, being electrically conductive, biocompatible, bioactive, and biodegradable, make it suitable for possible uses in biomedical applications.
Assuntos
Materiais Biocompatíveis/química , Condutividade Elétrica , Eletroquímica , Hidrogéis/química , Peptídeos/química , Polímeros/químicaRESUMO
Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.
RESUMO
In Latin America, the cultivation of Arabica coffee (Coffea arabica) plays a critical role in rural livelihoods, biodiversity conservation, and sustainable development. Over the last 20 years, coffee farms and landscapes across the region have undergone rapid and profound biophysical changes in response to low coffee prices, changing climatic conditions, severe plant pathogen outbreaks, and other drivers. Although these biophysical transformations are pervasive and affect millions of rural livelihoods, there is limited information on the types, location, and extent of landscape changes and their socioeconomic and ecological consequences. Here we review the state of knowledge on the ongoing biophysical changes in coffee-growing regions, explore the potential socioeconomic and ecological impacts of these changes, and highlight key research gaps. We identify seven major land-use trends which are affecting the sustainability of coffee-growing regions across Latin America in different ways. These trends include (1) the widespread shift to disease-resistant cultivars, (2) the conventional intensification of coffee management with greater planting densities, greater use of agrochemicals and less shade, (3) the conversion of coffee to other agricultural land uses, (4) the introduction of Robusta coffee (Coffea canephora) into areas not previously cultivated with coffee, (5) the expansion of coffee into forested areas, (6) the urbanization of coffee landscapes, and (7) the increase in the area of coffee produced under voluntary sustainability standards. Our review highlights the incomplete and scattered information on the drivers, patterns, and outcomes of biophysical changes in coffee landscapes, and lays out a detailed research agenda to address these research gaps and elucidate the effects of different landscape trajectories on rural livelihoods, biodiversity conservation, and other aspects of sustainable development. A better understanding of the drivers, patterns, and consequences of changes in coffee landscapes is vital for informing the design of policies, programs, and incentives for sustainable coffee production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00712-0.
RESUMO
As it forms water-filled channel in the mitochondria outer membrane and diffuses essential metabolites such as NADH and ATP, the voltage-dependent anion channel (VDAC) protein family plays a central role in all eukaryotic cells. In comparison with their mammalian homologues, little is known about the structural and functional properties of plant VDACs. In the present contribution, one of the two VDACs isoforms of Solanum tuberosum, stVDAC36, has been successfully overexpressed and refolded by an in-house method, as demonstrated by the information on its secondary and tertiary structure gathered from circular dichroism and intrinsic fluorescence. Cross-linking and molecular modeling studies have evidenced the presence of dimers and tetramers, and they suggest the formation of an intermolecular disulfide bond between two stVDAC36 monomers. The pore-forming activity was also assessed by liposome swelling assays, indicating a typical pore diameter between 2.0 and 2.7 nm. Finally, insights about the ATP binding inside the pore are given by docking studies and electrostatic calculations.
Assuntos
Trifosfato de Adenosina/química , Lipossomos/química , Proteínas de Plantas/química , Solanum tuberosum/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Concentração Osmolar , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Redobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solanum tuberosum/genética , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismoRESUMO
A key factor for improving the sensitivity and performance of immunosensors based on mechanical-plasmonic methods is the orientation of the antibody proteins immobilized on the inorganic surface. Although experimental techniques fail to determine surface phenomena at the molecular level, modern simulations open the possibility for improving our understanding of protein-surface interactions. In this work, replica exchange molecular dynamics (REMD) simulations have been used to model the IgG1 protein tethered onto the amorphous silica surface by considering a united-atom model and a relatively large system (2500 nm2 surface). Additional molecular dynamics (MD) simulations have been conducted to derive an atomistic model for the amorphous silica surface using the cristobalite crystal structure as a starting point and to examine the structure of the free IgG1 antibody in the solution for comparison when immobilized. Analyses of the trajectories obtained for the tethered IgG1, which was sampled considering 32 different temperatures, have been used to define the geometry of the protein with respect to the inorganic surface. The tilt angle of the protein with respect to the surface plane increases with temperature, the most populated values being 24, 66, and 87° at the lowest (250 K), room (298 K), and the highest (380 K) temperatures. This variation indicates that the importance of protein-surface interactions decreases with increasing temperature. The influence of the surface on the structure of the antibody is very significant in the constant region, which is directly involved in the tethering process, while it is relatively unimportant for the antigen-binding fragments, which are farthest from the surface. These results are expected to contribute to the development of improved mechanical-plasmonic sensor microarrays in the near future.
Assuntos
Técnicas Biossensoriais , Simulação de Dinâmica Molecular , Imunoensaio , Imunoglobulina G , Dióxido de SilícioRESUMO
Dynamic covalent chemistry applied to polymers has attracted significant attention over the past decade. Within this area, this review highlights the recent research on polysaccharide-based hydrogels cross-linked by boronic acid moieties, illustrating its versatility and relevance in biomaterials science to design self-healing, multiple stimuli-responsive, and adaptive biointerfaces and advanced functional devices.
Assuntos
Materiais Biocompatíveis , Hidrogéis , Ácidos Borônicos , Polímeros , PolissacarídeosRESUMO
High-performance hydrogels play a crucial role as solid electrolytes for flexible electrochemical supercapacitors (ESCs). More specifically, all solid-state ESCs based on renewable, biodegradable and/or biocompatible hydrogels doped with inorganic salts as electrolytes are attractive not only because of their contribution to reducing resource consumption and/or the generation of electronic garbage, but also due to their potential applicability in the biomedical field. Here, computer simulations have been combined with experimental measurements to probe the outstanding capability as solid electrolytes of photo-crosslinked unsaturated polyesteramide hydrogels containing phenylalanine, butenediol and fumarate, and doped with NaCl (UPEA-Phe/NaCl). Atomistic molecular dynamics simulations have shown the influence of the hydrogel pore structure in the migration of Na+ and Cl- ions, suggesting that UPEA-Phe/NaCl hydrogels prepared without completing the photo-crosslinking reaction will exhibit better behavior as solid electrolytes. Theoretical predictions have been confirmed by potentiodynamic and galvanostatic studies on ESCs fabricated using poly(3,4-ethylenedioxythiophene) electrodes and UPEA-Phe/NaCl hydrogels, which were obtained using different times of exposure to UV radiation (i.e. 4 and 8 h for incomplete and complete photo-crosslinking reaction). Moreover, the behavior as a solid electrolyte of the UPEA-Phe/NaCl hydrogel prepared using a photo-polymerization time of 4 h has been found to be significantly superior to those exhibited by different polypeptide and polysaccharide hydrogels, which were analyzed using ESCs with identical electrodes and experimental conditions.
RESUMO
CREKA (Cys-Arg-Glu-Lys-Ala) and its engineered analogue CRMeEKA, in which Glu has been replaced by N-methyl-Glu to provide resistance against proteolysis, are emerging pentapeptides that were specifically designed to bind fibrin-fibronectin complexes accumulated in the walls of tumour vessels. However, many of the intrinsic properties of CREKA and CRMeEKA, which are probably responsible for their different behaviour when combined with other materials (such as polymers) for diagnosis and therapeutics, remain unknown yet. The intrinsic tendency of these pentapeptides to form aggregates has been analysed by combining experimental techniques and atomistic Molecular Dynamics (MD) simulations. Dynamic light scattering assays show the formation of nanoaggregates that increase in size with the peptide concentration, even though aggregation occurs sooner for CRMeEKA, independently of the peptide concentration. FTIR and circular dichroism spectroscopy studies suggest that aggregated pentapeptides do not adopt any secondary structure. Atomistic MD trajectories show that CREKA aggregates faster and forms bigger molecular clusters than CRMeEKA. This behaviour has been explained by stability of the conformations adopted by un-associated peptide strands. While CREKA molecules organize by forming intramolecular backbone - side chain hydrogen bonds, CRMeEKA peptides display main chain - main chain hydrogen bonds closing very stable γ- or ß-turns. Besides, energetic analyses reveal that CRMeEKA strands are better solvated in water than CREKA ones, independent of whether they are assembled or un-associated.
Assuntos
Fibrina , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Peptídeos , Estrutura Secundária de ProteínaRESUMO
Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) CßâCγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CHâCH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.
Assuntos
Aminoácidos , Carbono , Metilação , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Diphenylalanine peptide (FF), which self-assembles into rigid tubular nanostructures, is a very short core recognition motif in Alzheimer's disease ß-amyloid (Aß) polypeptide. Moreover, the ability of the phenylalanine (F or Phe)-homopeptides to self-assemble into ordered nanostructures has been proved. Within this context it was shown that the assembly preferences of this family of compounds is altered by capping both the N- and C-termini using highly aromatic fluorenyl groups (i.e., fluorenyl-9-methoxycarbonyl and 9-fluorenylmethyl ester, named Fmoc and OFm, respectively). In this article the work performed in the field of the effect of the structure and incubation conditions on the morphology and polymorphism of short (from two to four amino acid residues) Phe-homopeptides is reviewed and accompanied by introducing some new results for completing the comparison. Special attention has been paid to the influence of solvent: co-solvent mixture used to solubilize the peptide, the peptide concentration and, in some cases, the temperature. More specifically, uncapped (FF, FFF, and FFFF), N-capped with Fmoc (Fmoc-FF, Fmoc-FFF, and Fmoc-FFFF), C-capped with OFm (FF-OFm), and doubly capped (Fmoc-FF-OFm, Fmoc-FFF-OFm, and Fmoc-FFFF-OFm) Phe-homopeptides have been re-measured. Although many of the experienced assembly conditions have been only revisited as they were previously reported, other experimental conditions have been examined by the first time in this work. In any case, pooling the effect of highly aromatic blocking groups in a single study, using a wide variety of experimental conditions, allows a perspective of how the disappearance of head-to-tail electrostatic interactions and the gradual increase in the amount of π-π stacking interactions, affects the morphology of the assemblies. Future technological applications of Phe-homopeptides can be envisaged by choosing the most appropriate self-assemble structure, defining not only the length of the peptide but also the amount and the position of fluorenyl capping groups.
Assuntos
Amiloide/química , Nanoestruturas/química , Peptídeos/química , Fenilalanina/química , Solventes/química , HumanosRESUMO
Semipermanently polarized hydroxyapatite, named SP/HAp(w), is obtained by applying a constant dc electric field of 1-10 kV/cm at 300-850 °C to the samples previously sintered in water vapor, while permanently polarized hydroxyapatite, PP/HAp(a), is produced by applying a dc electric field of 3 kV/cm at 1000 °C to the samples sintered in air. SP/HAp(w) has been used for biomedical applications, while PP/HAp(a) has been proved to be a valuable catalyst for N2 and CO2 fixation. In this work, structural differences between SP/HAp(w) and PP/HAp(a) have been ascertained using Raman microscopy, wide-angle X-ray diffraction, scanning electronic microscopy, high-resolution transmission electron microscopy, and grazing incidence X-ray diffraction. Results prove the existence of crystal distortion in the form of amorphous calcium phosphate and ß-tricalcium phosphate (ß-TCP) phases close to the surface because of the atmosphere used in the sintering process. The existence of an amorphous layer in the surface and the phase transition through ß-TCP of SP/HAp(w) are the structural factors responsible for the differences with respect to PP/HAp(a). Moreover, a superstructure has been identified in PP/HAp(a) samples, which could be another structural factor associated with enhanced conductivity, permanent polarization, and catalytic activity of this material.
RESUMO
Biominerals formed by DNA and calcium oxalate (CaOx) or hydroxyapatite (HAp), the most important and stable phase of calcium phosphate) have been examined and compared using a synergistic combination of computer simulation and experimental studies. The interest of this comparison stems from the medical observation that HAp- and CaOx-based microcalcifications are frequently observed in breast cancer tissues, and some of their features are used as part of the diagnosis. Molecular dynamics simulations show that (1) the DNA double helix remains stable when it is adsorbed onto the most stable facet of HAp, whereas it undergoes significant structural distortions when it is adsorbed onto CaOx; (2) DNA acts as a template for the nucleation and growth of HAp but not for the mineralization of CaOx; and (3) the DNA double helix remains stable when it is encapsulated inside HAp nanopores, but it becomes destabilized when the encapsulation occurs into CaOx nanopores. Furthermore, CaOx and HAp minerals containing DNA molecules inside and/or adsorbed on the surface have been prepared in the lab by mixing solutions containing the corresponding ions with fish sperm DNA. Characterization of the formed minerals, which has been focused on the identification of DNA using UV-vis spectroscopy, indicates that the tendency to adsorb and, especially, encapsulate DNA is much smaller for CaOx than for HAp, which is in perfect agreement with results from molecular dynamics simulations. Finally, quantum mechanical calculations have been performed to rationalize these results in terms of molecular interactions, evidencing the high affinity of Ca2+ toward oxalate anions in an aqueous environment.