Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 612(7941): 714-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477531

RESUMO

Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity1. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described2-4, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators-Nebulidia and Nibbleridia-that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.


Assuntos
Eucariotos , Cadeia Alimentar , Microbiologia , Filogenia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Biodiversidade , Ecologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/ultraestrutura , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Comportamento Predatório , Especificidade da Espécie
2.
Artigo em Inglês | MEDLINE | ID: mdl-38318934

RESUMO

The phylum Nematoda remains very poorly sampled for mtDNA, with a strong bias toward parasitic, economically important or model species of the Chromadoria lineage. Most chromadorian mitogenomes share a specific order of genes encoded on one mtDNA strand. However, the few sequenced representatives of the Dorylaimia lineage exhibit a variable order of mtDNA genes encoded on both strands. While the ancestral arrangement of nematode mitogenome remains undefined, no evidence has been reported for Enoplia, the phylum's third early divergent major lineage. We describe the first mitogenome of an enoplian nematode, Campydora demonstrans, and contend that the complete 37-gene repertoire and both-strand gene encoding are ancestral states preserved in Enoplia and Dorylaimia versus the derived mitogenome arrangement in some Chromadoria. The C. demonstrans mitogenome is 17,018 bp in size and contains a noncoding perfect inverted repeat with 2013 bp-long arms, subdividing the mitogenome into two coding regions. This mtDNA arrangement is very rare among animals and instead resembles that of chloroplast genomes in land plants. Our report broadens mtDNA taxonomic sampling of the phylum Nematoda and adds support to the applicability of cox1 gene as a phylogenetic marker for establishing nematode relationships within higher taxa.

3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511167

RESUMO

Nematomorpha (hairworms) is a phylum of parasitic ecdysozoans, best known for infecting arthropods and guiding their hosts toward water, where the parasite can complete its life cycle. Over 350 species of nematomorphs have been described, yet molecular data for the group remain scarce. The few available mitochondrial genomes of nematomorphs are enriched with long inverted repeats, which are embedded in the coding sequences of their genes-a remarkably unusual feature exclusive to this phylum. Here, we obtain and annotate the repeats in the mitochondrial genome of another nematomorph species-Parachordodes pustulosus. Using genomic and transcriptomic libraries, we investigate the impact of inverted repeats on the read coverage of the mitochondrial genome. Pronounced drops in the read coverage coincide with regions containing long inverted repeats, denoting the 'blind spots' of short-fragment sequencing libraries. Phylogenetic inference with the novel data reveals multiple disagreements between the traditional system of Nematomorpha and molecular data, rendering several genera paraphyletic, including Parachordodes.


Assuntos
DNA Mitocondrial , Genoma Helmíntico , Genoma Mitocondrial , Helmintos , Sequências Repetidas Invertidas , DNA Mitocondrial/química , DNA Mitocondrial/genética , Helmintos/classificação , Helmintos/genética , Helmintos/ultraestrutura , Animais , Filogenia , Masculino , Feminino , Conformação de Ácido Nucleico
4.
Nucleic Acids Res ; 47(13): 6858-6870, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31194871

RESUMO

Inverted repeats are common DNA elements, but they rarely overlap with protein-coding sequences due to the ensuing conflict with the structure and function of the encoded protein. We discovered numerous perfect inverted repeats of considerable length (up to 284 bp) embedded within the protein-coding genes in mitochondrial genomes of four Nematomorpha species. Strikingly, both arms of the inverted repeats encode conserved regions of the amino acid sequence. We confirmed enzymatic activity of the respiratory complex I encoded by inverted repeat-containing genes. The nucleotide composition of inverted repeats suggests strong selection at the amino acid level in these regions. We conclude that the inverted repeat-containing genes are transcribed and translated into functional proteins. The survey of available mitochondrial genomes reveals that several other organisms possess similar albeit shorter embedded repeats. Mitochondrial genomes of Nematomorpha demonstrate an extraordinary evolutionary compromise where protein function and stringent secondary structure elements within the coding regions are preserved simultaneously.


Assuntos
Genes de Helmintos/genética , Genes Mitocondriais/genética , Código Genético , Genoma Mitocondrial , Helmintos/genética , Sequências Repetidas Invertidas/genética , Sequência de Aminoácidos , Animais , Composição de Bases , Sequência de Bases , DNA de Helmintos/genética , DNA Ribossômico/genética , Complexo I de Transporte de Elétrons/genética , Evolução Molecular , Feminino , Proteínas de Helminto/genética , Masculino , Consumo de Oxigênio , RNA de Helmintos/genética , RNA Ribossômico 18S/genética , Seleção Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 149: 106839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32325195

RESUMO

Alveolates are a major supergroup of eukaryotes encompassing more than ten thousand free-living and parasitic species, including medically, ecologically, and economically important apicomplexans, dinoflagellates, and ciliates. These three groups are among the most widespread eukaryotes on Earth, and their environmental success can be linked to unique innovations that emerged early in each group. Understanding the emergence of these well-studied and diverse groups and their innovations has relied heavily on the discovery and characterization of early-branching relatives, which allow ancestral states to be inferred with much greater confidence. Here we report the phylogenomic analyses of 313 eukaryote protein-coding genes from transcriptomes of three members of one such group, the colponemids (Colponemidia), which support their monophyly and position as the sister lineage to all other known alveolates. Colponemid-related sequences from environmental surveys and our microscopical observations show that colponemids are not common in nature, but they are diverse and widespread in freshwater habitats around the world. Studied colponemids possess two types of extrusive organelles (trichocysts or toxicysts) for active hunting of other unicellular eukaryotes and potentially play an important role in microbial food webs. Colponemids have generally plesiomorphic morphology and illustrate the ancestral state of Alveolata. We further discuss their importance in understanding the evolution of alveolates and the origin of myzocytosis and plastids.


Assuntos
Alveolados/classificação , Comportamento Predatório/fisiologia , Alveolados/genética , Alveolados/ultraestrutura , Animais , Biodiversidade , Geografia , Filogenia , Subunidades Ribossômicas Menores/genética
6.
Mol Phylogenet Evol ; 144: 106710, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846708

RESUMO

The evolution of tRNA genes in mitochondrial (mt) genomes is a complex process that includes duplications, degenerations, and transpositions, as well as a specific process of identity change through mutations in the anticodon (tRNA gene remolding or tRNA gene recruitment). Using amphipod-specific tRNA models for annotation, we show that tRNA duplications are more common in the mt genomes of amphipods than what was revealed by previous annotations. Seventeen cases of tRNA gene duplications were detected in the mt genomes of amphipods, and ten of them were tRNA genes that underwent remolding. The additional tRNA gene findings were verified using phylogenetic analysis and genetic distance analysis. The majority of remolded tRNA genes (seven out of ten cases) were found in the mt genomes of endemic amphipod species from Lake Baikal. All additional mt tRNA genes arose independently in the Baikalian amphipods, indicating the unusual plasticity of tRNA gene evolution in these species assemblages. The possible reasons for the unusual abundance of additional tRNA genes in the mt genomes of Baikalian amphipods are discussed. The amphipod-specific tRNA models developed for MiTFi refine existing predictions of tRNA genes in amphipods and reveal additional cases of duplicated tRNA genes overlooked by using less specific Metazoa-wide models. The application of these models for mt tRNA gene prediction will be useful for the correct annotation of mt genomes of amphipods and probably other crustaceans.


Assuntos
Anfípodes/classificação , Anfípodes/genética , Duplicação Gênica , Genoma Mitocondrial/genética , RNA de Transferência/genética , Animais , Evolução Molecular , Genes Mitocondriais/fisiologia , Especiação Genética , Lagos , Mutação , Filogenia , Filogeografia , Sibéria
7.
J Eukaryot Microbiol ; 67(3): 393-402, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003917

RESUMO

Labyrinthulomycetes are mostly fungus-like heterotrophic protists that absorb nutrients in an osmotrophic or phagotrophic manner. Members of order Labyrinthulida produce unique membrane-bound ectoplasmic networks for movement and feeding. Among the various types of labyrinthulids' food substrates, diatoms play an important role due to their ubiquitous distribution and abundant biomass. We isolated and cultivated new diatom consuming Labyrinthulida strains from shallow coastal marine sediments. We described Labyrinthula diatomea n. sp. that differs from all known labyrinthulids in both molecular and morphological features. We provided strain delimitation within the genus Labyrinthula based on ITS sequences via haplotype network construction and compared it with previous phylogenetic surveys.


Assuntos
Diatomáceas/classificação , Diatomáceas/citologia , Sedimentos Geológicos/parasitologia , Análise de Sequência de DNA/métodos , DNA de Algas/genética , Diatomáceas/isolamento & purificação , Microscopia , Filogenia , Subunidades Ribossômicas Menores de Eucariotos/genética
8.
J Eukaryot Microbiol ; 66(4): 582-591, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30460733

RESUMO

Molecular phylogenetic analysis of 18S rRNA gene sequences of nearly any species of Chytridiomycota has typically challenged traditional classification and triggered taxonomic revision. This has often led to the establishment of new taxa which, normally, appears well supported by zoospore ultrastructure, which provides diagnostic characters. To construct a meaningful and comprehensive classification of Chytridiomycota, the combination of molecular phylogenies and morphological studies of traditionally defined chytrid species is needed. In this work, we have studied morphological and ultrastructural features based on light and transmission electron microscopy as well as molecular phylogenetic analysis of a parasite (strain X-124 CCPP ZIN RAS) morphologically similar to Rhizophydium granulosporum living on the yellow-green alga Tribonema gayanum. Phylogenetic analysis of the 18S rRNA gene sequence of this strain supports that it represents a new genus and species affiliated to the recently established order Gromochytriales. The ultrastructure of X-124 confirms its phylogenetic position sister to Gromochytrium and serves as the basis for the description of the new genus and species Apiochytrium granulosporum. The 18S rRNA gene of A. granulosporum contains a S943 group I intron that carries a homing endonuclease pseudogene.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/genética , Quitridiomicetos/ultraestrutura , Microscopia , Microscopia Eletrônica de Transmissão , Filogenia , RNA Fúngico/análise , RNA Ribossômico 18S/análise
9.
BMC Genomics ; 17(Suppl 14): 1016, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28105939

RESUMO

BACKGROUND: Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. RESULTS: Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni. The phylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern. Mitochondrial genomes of four species possess 23 tRNA genes, and in three genomes the extra tRNA gene copies have likely undergone remolding. Widely varying lengths of putative control regions and other intergenic spacers are typical for the mitochondrial genomes of Baikalian amphipods. CONCLUSIONS: The mitochondrial genomes of Baikalian amphipods display varying organization suggesting an intense rearrangement process during their evolution. Comparison of complete mitochondrial genomes is a potent approach for studying the amphipod evolution in Lake Baikal.


Assuntos
Anfípodes/genética , Evolução Molecular , Genoma Mitocondrial , Anfípodes/classificação , Animais , Composição de Bases , Códon , Ordem dos Genes , Variação Genética , Tamanho do Genoma , Genômica/métodos , Fases de Leitura Aberta , Filogenia
10.
Sci Rep ; 13(1): 8015, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198195

RESUMO

The phylum Cnidaria consists of several morphologically diverse classes including Anthozoa, Cubozoa, Hydrozoa, Polypodiozoa, Scyphozoa, Staurozoa, and Myxozoa. Myxozoa comprises two subclasses of obligate parasites-Myxosporea and Malacosporea, which demonstrate various degrees of simplification. Myxosporea were previously reported to lack the majority of core protein domains of apoptotic proteins including caspases, Bcl-2, and APAF-1 homologs. Other sequenced Cnidaria, including the parasite Polypodium hydriforme from Polypodiozoa do not share this genetic feature. Whether this loss of core apoptotic proteins is unique to Myxosporea or also present in its sister subclass Malacosporea was not previously investigated. We show that the presence of core apoptotic proteins gradually diminishes from free-living Cnidaria to Polypodium to Malacosporea to Myxosporea. This observation does not favor the hypothesis of catastrophic simplification of Myxosporea at the genetic level, but rather supports a stepwise adaptation to parasitism that likely started from early parasitic ancestors that gave rise to Myxozoa.


Assuntos
Antozoários , Cnidários , Cubomedusas , Hidrozoários , Myxozoa , Animais , Cnidários/genética , Filogenia , Hidrozoários/genética
11.
Curr Biol ; 32(21): 4607-4619.e7, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36126656

RESUMO

Over the past decade, molecular phylogenetics has reshaped our understanding of the fungal tree of life by unraveling a hitherto elusive diversity of the protistan relatives of Fungi. Aphelida constitutes one of these novel deep branches that precede the emergence of osmotrophic fungal lifestyle and hold particular significance as the pathogens of algae. Here, we obtain and analyze the genomes of aphelid species Amoeboaphelidium protococcarum and Amoeboaphelidium occidentale. Genomic data unmask the vast divergence between these species, hidden behind their morphological similarity, and reveal hybrid genomes with a complex evolutionary history in two strains of A. protococcarum. We confirm the proposed sister relationship between Aphelida and Fungi using phylogenomic analysis and chart the reduction of characteristic proteins involved in phagocytic activity in the evolution of Holomycota. Annotation of aphelid genomes demonstrates the retention of actin nucleation-promoting complexes associated with phagocytosis and amoeboid motility and also reveals a conspicuous expansion of receptor-like protein kinases, uncharacteristic of fungal lineages. We find that aphelids possess multiple carbohydrate-processing enzymes that are involved in fungal cell wall synthesis but do not display rich complements of algal cell-wall-processing enzymes, suggesting an independent origin of fungal plant-degrading capabilities. Aphelid genomes show that the emergence of Fungi from phagotrophic ancestors relied on a common cell wall synthetic machinery but required a different set of proteins for digestion and interaction with the environment.


Assuntos
Eucariotos , Genômica , Eucariotos/fisiologia , Filogenia , Plantas/genética , Fungos/genética , Fungos/metabolismo , Genoma Fúngico , Evolução Molecular
12.
Bioessays ; 31(7): 758-68, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19472368

RESUMO

For over a century, Haeckel's Gastraea theory remained a dominant theory to explain the origin of multicellular animals. According to this theory, the animal ancestor was a blastula-like colony of uniform cells that gradually evolved cell differentiation. Today, however, genes that typically control metazoan development, cell differentiation, cell-to-cell adhesion, and cell-to-matrix adhesion are found in various unicellular relatives of the Metazoa, which suggests the origin of the genetic programs of cell differentiation and adhesion in the root of the Opisthokonta. Multicellular stages occurring in the complex life cycles of opisthokont protists (mesomycetozoeans and choanoflagellates) never resemble a blastula. Here, we discuss a more realistic scenario of transition to multicellularity through integration of pre-existing transient cell types into the body of an early metazoon, which possessed a complex life cycle with a differentiated sedentary filter-feeding trophic stage and a non-feeding blastula-like larva, the synzoospore. Choanoflagellates are considered as forms with secondarily simplified life cycles.


Assuntos
Evolução Biológica , Diferenciação Celular , Animais , Genes , Estágios do Ciclo de Vida , Modelos Biológicos , Fatores de Tempo
13.
Genes (Basel) ; 12(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946978

RESUMO

There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome's size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.


Assuntos
Anfípodes/genética , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Animais , Ordem dos Genes , Genes de RNAr , Tamanho do Genoma , Genoma Mitocondrial , RNA de Transferência/genética
14.
PeerJ ; 9: e11912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616591

RESUMO

BACKGROUND: Gregarines are a major group of apicomplexan parasites of invertebrates. The gregarine classification is largely incomplete because it relies primarily on light microscopy, while electron microscopy and molecular data in the group are fragmentary and often do not overlap. A key characteristic in gregarine taxonomy is the structure and function of their attachment organelles (AOs). AOs have been commonly classified as "mucrons" or "epimerites" based on their association with other cellular traits such as septation. An alternative proposal focused on the AOs structure, functional role, and developmental fate has recently restricted the terms "mucron" to archigregarines and "epimerite" to eugregarines. METHODS: Light microscopy and scanning and transmission electron microscopy, molecular phylogenetic analyses of ribosomal RNA genes. RESULTS: We obtained the first data on fine morphology of aseptate eugregarines Polyrhabdina pygospionis and Polyrhabdina cf. spionis, the type species. We demonstrate that their AOs differ from the mucron in archigregarines and represent an epimerite structurally resembling that in other eugregarines examined using electron microscopy. We then used the concatenated ribosomal operon DNA sequences (SSU, 5.8S, and LSU rDNA) of P. pygospionis to explore the phylogeny of eugregarines with a resolution superior to SSU rDNA alone. The obtained phylogenies show that the Polyrhabdina clade represents an independent, deep-branching family in the Ancoroidea clade within eugregarines. Combined, these results lend strong support to the hypothesis that the epimerite is a synapomorphic innovation of eugregarines. Based on these findings, we resurrect the family Polyrhabdinidae Kamm, 1922 and erect and diagnose the family Trollidiidae fam. n. within the superfamily Ancoroidea Simdyanov et al., 2017. Additionally, we re-describe the characteristics of P. pygospionis, emend the diagnoses of the genus Polyrhabdina, the family Polyrhabdinidae, and the superfamily Ancoroidea.

15.
Sci Rep ; 10(1): 15847, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985520

RESUMO

Agamococcidians are enigmatic and poorly studied parasites of marine invertebrates with unexplored diversity and unclear relationships to other sporozoans such as the human pathogens Plasmodium and Toxoplasma. It is believed that agamococcidians are not capable of sexual reproduction, which is essential for life cycle completion in all well studied parasitic apicomplexans. Here, we describe three new species of agamococcidians belonging to the genus Rhytidocystis. We examined their cell morphology and ultrastructure, resolved their phylogenetic position by using near-complete rRNA operon sequences, and searched for genes associated with meiosis and oocyst wall formation in two rhytidocystid transcriptomes. Phylogenetic analyses consistently recovered rhytidocystids as basal coccidiomorphs and away from the corallicolids, demonstrating that the order Agamococcidiorida Levine, 1979 is polyphyletic. Light and transmission electron microscopy revealed that the development of rhytidocystids begins inside the gut epithelial cells, a characteristic which links them specifically with other coccidiomorphs to the exclusion of gregarines and suggests that intracellular invasion evolved early in the coccidiomorphs. We propose a new superorder Eococcidia for early coccidiomorphs. Transcriptomic analysis demonstrated that both the meiotic machinery and oocyst wall proteins are preserved in rhytidocystids. The conservation of meiotic genes and ultrastructural similarity of rhytidocystid trophozoites to macrogamonts of true coccidians point to an undescribed, cryptic sexual process in the group.


Assuntos
Coccídios/genética , Genes de Protozoários/genética , Meiose/genética , Reprodução Assexuada/genética , Coccídios/fisiologia , Coccídios/ultraestrutura , Genes de Protozoários/fisiologia , Microscopia , Microscopia Eletrônica de Transmissão , Filogenia
16.
Curr Biol ; 30(22): 4500-4509.e5, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32976804

RESUMO

The origin of animals is one of the most intensely studied evolutionary events, and our understanding of this transition was greatly advanced by analyses of unicellular relatives of animals, which have shown many "animal-specific" genes actually arose in protistan ancestors long before the emergence of animals [1-3]. These genes have complex distributions, and the protists have diverse lifestyles, so understanding their evolutionary significance requires both a robust phylogeny of animal relatives and a detailed understanding of their biology [4, 5]. But discoveries of new animal-related lineages are rare and historically biased to bacteriovores and parasites. Here, we characterize the morphology and transcriptome content of a new animal-related lineage, predatory flagellate Tunicaraptor unikontum. Tunicaraptor is an extremely small (3-5 µm) and morphologically simple cell superficially resembling some fungal zoospores, but it survives by preying on other eukaryotes, possibly using a dedicated but transient "mouth," which is unique for unicellular opisthokonts. The Tunicaraptor transcriptome encodes a full complement of flagellar genes and the flagella-associated calcium channel, which is only common to predatory animal relatives and missing in microbial parasites and grazers. Tunicaraptor also encodes several major classes of animal cell adhesion molecules, as well as transcription factors and homologs of proteins involved in neurodevelopment that have not been found in other animal-related lineages. Phylogenomics, including Tunicaraptor, challenges the existing framework used to reconstruct the evolution of animal-specific genes and emphasizes that the diversity of animal-related lineages may be better understood only once the smaller, more inconspicuous animal-related lineages are better studied. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Evolução Biológica , Eucariotos/fisiologia , Parasitos/fisiologia , Comportamento Predatório/fisiologia , Animais , Moléculas de Adesão Celular/genética , Flagelos/genética , Parasitos/citologia , Filogenia , Fatores de Transcrição/genética , Transcriptoma/fisiologia
17.
Elife ; 82019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31418692

RESUMO

The phylum Apicomplexa comprises human pathogens such as Plasmodium but is also an under-explored hotspot of evolutionary diversity central to understanding the origins of parasitism and non-photosynthetic plastids. We generated single-cell transcriptomes for all major apicomplexan groups lacking large-scale sequence data. Phylogenetic analysis reveals that apicomplexan-like parasites are polyphyletic and their similar morphologies emerged convergently at least three times. Gregarines and eugregarines are monophyletic, against most expectations, and rhytidocystids and Eleutheroschizon are sister lineages to medically important taxa. Although previously unrecognized, plastids in deep-branching apicomplexans are common, and they contain some of the most divergent and AT-rich genomes ever found. In eugregarines, however, plastids are either abnormally reduced or absent, thus increasing known plastid losses in eukaryotes from two to four. Environmental sequences of ten novel plastid lineages and structural innovations in plastid proteins confirm that plastids in apicomplexans and their relatives are widespread and share a common, photosynthetic origin.


Assuntos
Apicomplexa/classificação , Apicomplexa/crescimento & desenvolvimento , Apicoplastos/metabolismo , Variação Genética , Apicomplexa/genética , Apicoplastos/genética , Evolução Molecular , Perfilação da Expressão Gênica , Filogenia
18.
Front Genet ; 10: 443, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178892

RESUMO

Two enigmatic groups of morphologically simple parasites of invertebrates, the Dicyemida (syn. Rhombozoa) and the Orthonectida, since the 19th century have been usually considered as two classes of the phylum Mesozoa. Early molecular evidence suggested their relationship within the Spiralia (=Lophotrochozoa), however, high rates of dicyemid and orthonectid sequence evolution led to contradicting phylogeny reconstructions. Genomic data for orthonectids revealed that they are highly simplified spiralians and possess a reduced set of genes involved in metazoan development and body patterning. Acquiring genomic data for dicyemids, however, remains a challenge due to complex genome rearrangements including chromatin diminution and generation of extrachromosomal circular DNAs, which are reported to occur during the development of somatic cells. We performed genomic sequencing of one species of Dicyema, and obtained transcriptomic data for two Dicyema spp. Homeodomain (homeobox) transcription factors, G-protein-coupled receptors, and many other protein families have undergone a massive reduction in dicyemids compared to other animals. There is also apparent reduction of the bilaterian gene complements encoding components of the neuromuscular systems. We constructed and analyzed a large dataset of predicted orthologous proteins from three species of Dicyema and a set of spiralian animals including the newly sequenced genome of the orthonectid Intoshia linei. Bayesian analyses recovered the orthonectid lineage within the Annelida. In contrast, dicyemids form a separate clade with weak affinity to the Rouphozoa (Platyhelminthes plus Gastrotricha) or (Entoprocta plus Cycliophora) suggesting that the historically proposed Mesozoa is a polyphyletic taxon. Thus, dramatic simplification of body plans in dicyemids and orthonectids, as well as their intricate life cycles that combine metagenesis and heterogony, evolved independently in these two lineages.

19.
Protist ; 169(6): 826-852, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30453272

RESUMO

Archigregarines are a key group for understanding the early evolution of Apicomplexa. Here we report morphological, ultrastructural, and molecular phylogenetic evidence from two archigregarine species: Selenidium pygospionis sp. n. and S. pherusae sp. n. They exhibited typical features of archigregarines. Additionally, an axial row of vacuoles of a presumably nutrient distribution system was revealed in S. pygospionis. Intracellular stages of S. pygospionis found in the host intestinal epithelium may point to the initial intracellular localization in the course of parasite development. Available archigregarine SSU (18S) rDNA sequences formed four major lineages fitting the taxonomical affiliations of their hosts, but not the morphological or biological features used for the taxonomical revision by Levine (1971). Consequently, the genus Selenidioides Levine, 1971 should be abolished. The branching order of these lineages was unresolved; topology tests rejected neither para- nor monophyly of archigregarines. We provided phylogenies based on LSU (28S) rDNA and near-complete ribosomal operon (concatenated SSU, 5.8S, LSU rDNAs) sequences including S. pygospionis sequences. Although being preliminary, they nevertheless revealed the monophyly of gregarines previously challenged by many molecular phylogenetic studies. Despite their molecular-phylogenetic heterogeneity, archigregarines exhibit an extremely conservative plesiomorphic structure; their ultrastructural key features appear to be symplesiomorphies rather than synapomorphies.


Assuntos
Apicomplexa/classificação , Apicomplexa/isolamento & purificação , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Filogenia , Animais , Apicomplexa/genética , Apicomplexa/ultraestrutura , Organismos Aquáticos/genética , Organismos Aquáticos/ultraestrutura , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Locomoção , Microscopia , Microscopia Eletrônica , Poliquetos/parasitologia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
20.
Protist ; 169(5): 697-726, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125804

RESUMO

Blastogregarines are poorly studied parasites of polychaetes superficially resembling gregarines, but lacking syzygy and gametocyst stages in the life cycle. Furthermore, their permanent multinuclearity and gametogenesis by means of budding considerably distinguish them from other parasitic Apicomplexa such as coccidians and hematozoans. The affiliation of blastogregarines has been uncertain: different authors considered them highly modified gregarines, an intermediate apicomplexan lineage between gregarines and coccidians, or an isolated group of eukaryotes altogether. Here, we report the ultrastructure of two blastogregarine species, Siedleckia nematoides and Chattonaria mesnili, and provide the first molecular data on their phylogeny based on SSU, 5.8S, and LSU rDNA sequences. Morphological analysis reveals that blastogregarines possess both gregarine and coccidian features. Several traits shared with archigregarines likely represent the ancestral states of the corresponding cell structures for parasitic apicomplexans: a distinctive tegument structure and myzocytotic feeding with a well-developed apical complex. Unlike gregarines but similar to coccidians however, the nuclei of male blastogregarine gametes are associated with two kinetosomes. Molecular phylogenetic analyses reveal that blastogregarines are an independent, early diverging lineage of apicomplexans. Overall, the morphological and molecular evidence congruently suggests that blastogregarines represent a separate class of Apicomplexa.


Assuntos
Apicomplexa/crescimento & desenvolvimento , Apicomplexa/genética , Filogenia , Apicomplexa/classificação , Apicomplexa/ultraestrutura , Corpos Basais/metabolismo , DNA de Protozoário/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/ultraestrutura , Ativação Linfocitária , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA