Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Clin Genet ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107234

RESUMO

Hearing loss is one of the most prevalent genetic disorders in humans. Locus and allelic heterogeneity cause fundamental challenges in hearing loss genetic diagnosis and management of patients and their families. This study examined the genetic profile of patients with prelingual hearing loss who were referred to the Genetic Foundation of Khorasan Razavi spanning over a decade. Deleterious variants in GJB2 were evaluated through Sanger sequencing among 745 non-syndromic hearing loss patients. Furthermore, exome sequencing was applied in 250 patients with negative GJB2 sequencing results and 30 patients with syndromic hearing loss. The findings revealed a relatively low frequency of GJB2 variants among the studied patients. Exome sequencing successfully identified the genetic causes of hearing loss in 70% of the patients. Moreover, variants in 10 genes, namely SLC26A4, MYO15A, TMPRSS3, TMC1, OTOF, CDH23, PJVK, MYO7A, TECTA, and PCDH15, accounted for 66% of the positive exome sequencing findings in this study. At least three prevalent founder alleles in the hearing-impaired population of eastern Iran were identified. This study emphasizes the efficiency of exome sequencing as a powerful tool for determining the etiology of prelingual hearing loss in the eastern Iranian population.

2.
Biochem Genet ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407766

RESUMO

Bardet-Biedl syndrome (BBS) is a rare inherited ciliopathy disorder characterized by a broad spectrum of clinical symptoms such as retinal dystrophy, obesity, polydactyly, genitourinary and kidney anomalies, learning disability, and hypogonadism. The understanding of the variants involved in BBS-causing genes remains incomplete, highlighting the need for further research to develop a molecular diagnostic strategy for this syndrome. Singleton whole-exome sequencing (WES) was performed on sixteen patients. Our study revealed (1) nine patients carried eight homozygous pathogenic variants with four of them being novel (2) Specifically, a synonymous splicing variant (c.471G > A) in BBS2 gene in six patients with Baloch ethnicity. The identification of runs of homozygosity (ROH) calling was performed using the BCFtools/RoH software on WES data of patients harboring c.471G > A variant. The presence of shared homozygous regions containing the identified variant was confirmed in these patients. In-silico analysis predicted the effect of the c.471G > A variants on BBS2 mRNA splicing. This variant results in disrupted wild-type donor site and intron retention in the mature mRNA. (3) And a deletion of exons 14 to 17 in the BBS1 gene was identified in one patient by Copy-Number Variation (CNV) analysis using the ExomeDepth pipeline. Our results identified the founder variant c.471G > A in the BBS2 gene in the Baloch ethnicity of the Iranian population. This finding can guide the diagnostic approach of this syndrome in future studies.

3.
Gene ; 910: 148335, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432532

RESUMO

BACKGROUND: Cleft lip with or without cleft palate (CL/CP) is a prevalent congenital malformation. Approximately 16 candidate loci for CL/CP have been identified in both animal models and humans through association or genetic linkage studies. One of these loci is the platelet-derived growth factor-C (PDGFC) gene. In animal models, a mutation in the PDGFC gene has been shown to lead to CL/CP, with PDGF-C protein serving as a growth factor for mesenchymal cells, playing a crucial role in embryogenesis during the induction of neural crest cells. In this study, we present the identification of a novel frameshift mutation in the PDGFC gene, which we hypothesize to be associated with CL/CP, within a consanguineous Iranian family. CASE PRESENTATION: The proband was a 3-year-old girl with non-syndromic CL/CP. A history of craniofacial clefts was present in her family. Following genetic counseling, karyotype analysis and whole-exome sequencing (WES) were performed. Cytogenetic analysis revealed normal results, while WES analysis showed that the proband carried a homozygous c.546dupA (p.L183fs) mutation in the PDGFC gene. Sanger sequencing confirmed that her parents were carriers of the mutation. CONCLUSION: The c.546dupA (p.L183fs) mutation of PDGFC has not been previously reported and was not found in human genome databases. We speculate that the c.546dupA mutation of the PDGFC gene, identified in the Iranian patient, may be responsible for the phenotype of non-syndromic CL/CP (ns-CL/CP). Further studies are warranted to explore the specific pathogenesis of the PDGFC mutation in ns-CL/CP.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Feminino , Animais , Pré-Escolar , Fenda Labial/genética , Fissura Palatina/genética , Irã (Geográfico) , Mutação , Fator de Crescimento Derivado de Plaquetas/genética
4.
Cureus ; 13(7): e16340, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34395123

RESUMO

Fragile X syndrome (FXS) has been reported as the leading cause of mental retardation (MR) that predominantly involves males compared to females. An over-expansion of CGG repeats in the 5' untranslated region of the FMR1 gene plays the primary role in this disease. In this study, we encountered a homozygote female patient affected by FMR1 expansion mutation. Surprisingly, she had inherited her full-mutated alleles from two different ancestors. This condition is an extremely rare case of FXS. After accurate genetic counseling, family members were referred to the laboratory for genetic testing. Karyotype with two X chromosomes was the finding after the G-banding study of the proband. Molecular analysis indicated that she was a female with full-mutated or pre-mutated alleles on both of her X chromosomes. It is a rare phenomenon that we detected in this patient. We have concluded that a combination of allele instability during oogenesis and inheritance of two alleles are the leading cause of MR in the presented case.

5.
J Microbiol Methods ; 90(1): 36-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525194

RESUMO

Enteric infections resulting in diarrheal diseases remain as major global health problems. Among bacteria, enterotoxigenic Escherichia coli (ETEC) causes the largest number of diarrheal cases. There is a great interest in developing an effective ETEC vaccine. An ETEC vaccine could focus on virulence factors present in ETEC pathogens and nontoxic Heat-labile B subunit (LTB). Chimeric proteins carrying epitopes, or adjuvant sequences increase the possibility of eliciting a broad cellular or humoral immune response. In-silico tools are highly suited to study, design and evaluate vaccine strategies. Colonization factors are among the virulence factor studied in the present work employing bioinformatic tools. A synthetic chimeric gene, encoding CfaB, CstH, CotA, and LTB was designed. Modeling was done to predict the 3D structure of protein. This model was validated using Ramachandran plot statistics. The predicted B-cell epitopes were mapped on the surface of the model. Validation result showed that 97.2% residues lie in favored or additional allowed region of Ramachandran plot. VaxiJen analysis of the protein showed high antigenicity. Linear and conformational B-cell epitopes were identified. The identified T-cell epitopes are apt to bind MHC molecules. The epitopes in the chimeric protein are likely to induce both the B-cell and T-cell mediated immune responses.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Fatores de Virulência/imunologia , Adjuvantes Imunológicos/química , Sequência de Aminoácidos , Escherichia coli Enterotoxigênica/química , Escherichia coli Enterotoxigênica/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Vacinas contra Escherichia coli/química , Vacinas contra Escherichia coli/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Fatores de Virulência/química , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA