Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 23(34): 344007, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22886059

RESUMO

Roll-to-roll lamination is one promising technique to produce large-area organic electronic devices such as solar cells with a large through output. One challenge in this process is the frequent electric point shorting of the cathode and anode by the excess or concentrated applied stress from many possible sources. In this paper, we report a method to avoid electric point shorting by incorporating insulating and hard barium titanate (BaTiO(3)) nanoparticles (NPs) into the active layer to work as a spacer. It has been demonstrated that the incorporated BaTiO(3) NPs in poly(3-hexylthiophene):[6,6]-phenyl-c-61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction solar cells cause no deleterious effect to the power conversion process of this type of solar cell. The resulting laminated devices with NPs in the active layer display the same efficiency as the devices without NPs, while the laminated devices with NPs can sustain a ten times higher lamination stress of over 6 MPa. The flexible polymer solar cell device with incorporated NPs shows a much smaller survivable curvature radius of 4 mm, while a regular flexible device can only sustain a bending curvature radius of 8 mm before fracture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA