Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2316101121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547068

RESUMO

Though YB6 and LaB6 share the same crystal structure, atomic valence electron configuration, and phonon modes, they exhibit drastically different phonon-mediated superconductivity. YB6 superconducts below 8.4 K, giving it the second-highest critical temperature of known borides, second only to MgB2. LaB6 does not superconduct until near-absolute zero temperatures (below 0.45 K), however. Though previous studies have quantified the canonical superconductivity descriptors of YB6's greater Fermi-level (Ef) density of states and higher electron-phonon coupling (EPC), the root of this difference has not been assessed with full detail of the electronic structure. Through chemical bonding, we determine low-lying, unoccupied 4f atomic orbitals in lanthanum to be the key difference between these superconductors. These orbitals, which are not accessible in YB6, hybridize with π B-B bonds and bring this π-system lower in energy than the σ B-B bonds otherwise at Ef. This inversion of bands is crucial: the optical phonon modes we show responsible for superconductivity cause the σ-orbitals of YB6 to change drastically in overlap, but couple weakly to the π-orbitals of LaB6. These phonons in YB6 even access a crossing of electronic states, indicating strong EPC. No such crossing in LaB6 is observed. Finally, a supercell (the M k-point) is shown to undergo Peierls-like effects in YB6, introducing additional EPC from both softened acoustic phonons and the same electron-coupled optical modes as in the unit cell. Overall, we find that LaB6 and YB6 have fundamentally different mechanisms of superconductivity, despite their otherwise near-identity.

2.
Proc Natl Acad Sci U S A ; 120(39): e2304884120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733737

RESUMO

How does a single amino acid mutation occurring in the blinding disease, Leber's hereditary optic neuropathy (LHON), impair electron shuttling in mitochondria? We investigated changes induced by the m.3460 G>A mutation in mitochondrial protein ND1 using the tools of Molecular Dynamics and Free Energy Perturbation simulations, with the goal of determining the mechanism by which this mutation affects mitochondrial function. A recent analysis suggested that the mutation's replacement of alanine A52 with a threonine perturbs the stability of a region where binding of the electron shuttling protein, Coenzyme Q10, occurs. We found two functionally opposing changes involving the role of Coenzyme Q10. The first showed that quantum electron transfer from the terminal Fe/S complex, N2, to the Coenzyme Q10 headgroup, docked in its binding pocket, is enhanced. However, this positive adjustment is overshadowed by our finding that the mobility of Coenzyme Q10 in its oxidized and reduced states, entering and exiting its binding pocket, is disrupted by the mutation in a manner that leads to conditions promoting the generation of reactive oxygen species. An increase in reactive oxygen species caused by the LHON mutation has been proposed to be responsible for this optic neuropathy.


Assuntos
Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/genética , Espécies Reativas de Oxigênio , Complexo I de Transporte de Elétrons/genética , Alanina
3.
Chem Rev ; 123(13): 8069-8098, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37343385

RESUMO

Electrochemical carbon capture and concentration (eCCC) offers a promising alternative to thermochemical processes as it circumvents the limitations of temperature-driven capture and release. This review will discuss a wide range of eCCC approaches, starting with the first examples reported in the 1960s and 1970s, then transitioning into more recent approaches and future outlooks. For each approach, the achievements in the field, current challenges, and opportunities for improvement will be described. This review is a comprehensive survey of the eCCC field and evaluates the chemical, theoretical, and electrochemical engineering aspects of different methods to aid in the development of modern economical eCCC technologies that can be utilized in large-scale carbon capture and sequestration (CCS) processes.

4.
Proc Natl Acad Sci U S A ; 119(25): e2123496119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709322

RESUMO

Aqueous direct air capture (DAC) is a key technology toward a carbon negative infrastructure. Developing sorbent molecules with water and oxygen tolerance and high CO2 binding capacity is therefore highly desired. We analyze the CO2 absorption chemistries on amines, alkoxides, and phenoxides with density functional theory calculations, and perform inverse molecular design of the optimal sorbent. The alkoxides and phenoxides are found to be more suitable for aqueous DAC than amines thanks to their water tolerance (lower pKa prevents protonation by water) and capture stoichiometry of 1:1 (2:1 for amines). All three molecular systems are found to generally obey the same linear scaling relationship (LSR) between [Formula: see text] and [Formula: see text], since both CO2 and proton are bonded to the nucleophilic (alkoxy or amine) binding site through a majorly [Formula: see text] bonding orbital. Several high-performance alkoxides are proposed from the computational screening. Phenoxides have comparatively poorer correlation between [Formula: see text] and [Formula: see text], showing promise for optimization. We apply a genetic algorithm to search the chemical space of substituted phenoxides for the optimal sorbent. Several promising off-LSR candidates are discovered. The most promising one features bulky ortho substituents forcing the CO2 adduct into a perpendicular configuration with respect to the aromatic ring. In this configuration, the phenoxide binds CO2 and a proton using different molecular orbitals, thereby decoupling the [Formula: see text] and [Formula: see text]. The [Formula: see text] trend and off-LSR behaviors are then confirmed by experiments, validating the inverse molecular design framework. This work not only extensively studies the chemistry of the aqueous DAC, but also presents a transferrable computational workflow for understanding and optimization of other functional molecules.


Assuntos
Dióxido de Carbono , Técnicas de Química Analítica , Óxidos , Água , Aminas , Dióxido de Carbono/química , Técnicas de Química Analítica/métodos , Óxidos/química , Prótons , Água/química
5.
J Am Chem Soc ; 146(23): 16119-16127, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38815275

RESUMO

The dynamic restructuring of Cu has been observed under electrochemical conditions, and it has been hypothesized to underlie the unique reactivity of Cu toward CO2 electroreduction. Roughening is one of the key surface phenomena for Cu activation, whereby numerous atomic vacancies and adatoms form. However, the atomic structure of such surface motifs in the presence of relevant adsorbates has remained elusive. Here, we explore the chemical space of Cu surface restructuring under coverage of CO and H in realistic electroreduction conditions, by combining grand canonical DFT and global optimization techniques, from which we construct a potential-dependent grand canonical ensemble representation. The regime of intermediate and mixed CO and H coverage─where structures exhibit some elevated surface Cu─is thermodynamically unfavorable yet kinetically inevitable. Therefore, we develop a quasi-kinetic Monte Carlo simulation to track the system's evolution during a simulated cathodic scan. We reveal the evolution path of the system across coverage space and identify the accessible metastable structures formed along the way. Chemical bonding analysis is performed on the metastable structures with elevated Cu*CO species to understand their formation mechanism. By molecular dynamics simulations and free energy calculations, the surface chemistry of the Cu*CO species is explored, and we identify plausible mechanisms via which the Cu*CO species may diffuse or dimerize. This work provides rich atomistic insights into the phenomenon of surface roughening and the structure of involved species. It also features generalizable methods to explore the chemical space of restructuring surfaces with mixed adsorbates and their nonequilibrium evolution.

6.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848547

RESUMO

To unravel why computational design fails in creating viable enzymes, while directed evolution (DE) succeeds, our research delves into the laboratory evolution of protoglobin. DE has adapted this protein to efficiently catalyze carbene transfer reactions. We show that the previously proposed enhanced substrate access and binding alone cannot account for increased yields during DE. The 3D electric field in the entire active site is tracked through protein dynamics, clustered using the affinity propagation algorithm, and subjected to principal component analysis. This analysis reveals notable changes in the electric field with DE, where distinct field topologies influence transition state energetics and mechanism. A chemically meaningful field component emerges and takes the lead during DE and facilitates crossing the barrier to carbene transfer. Our findings underscore intrinsic electric field dynamic's influence on enzyme function, the ability of the field to switch mechanisms within the same protein, and the crucial role of the field in enzyme design.

7.
J Am Chem Soc ; 146(14): 9623-9630, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533830

RESUMO

The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from ∼110 mV/decade in pH 7-10 to ∼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.

8.
Nat Mater ; 22(8): 1022-1029, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37349398

RESUMO

In analogy to natural enzymes, an elaborated design of catalytic systems with a specifically tailored local chemical environment could substantially improve reaction kinetics, effectively combat catalyst poisoning effect and boost catalyst lifetime under unfavourable reaction conditions. Here we report a unique design of 'Ni(OH)2-clothed Pt-tetrapods' with an amorphous Ni(OH)2 shell as a water dissociation catalyst and a proton conductive encapsulation layer to isolate the Pt core from bulk alkaline electrolyte while ensuring efficient proton supply to the active Pt sites. This design creates a favourable local chemical environment to result in acidic-like hydrogen evolution reaction kinetics with a lowest Tafel slope of 27 mV per decade and a record-high specific activity and mass activity in alkaline electrolyte. The proton conductive Ni(OH)2 shell can also effectively reject impurity ions and retard the Oswald ripening, endowing a high tolerance to solution impurities and exceptional long-term durability that is difficult to achieve in the naked Pt catalysts. The markedly improved hydrogen evolution reaction activity and durability in an alkaline medium promise an attractive catalyst material for alkaline water electrolysers and renewable chemical fuel generation.

9.
J Am Chem Soc ; 145(31): 17265-17273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506379

RESUMO

Boron-containing materials, such as hexagonal boron nitride (h-BN), recently shown to be active and selective catalysts for the oxidative dehydrogenation of propane (ODHP), have been shown to undergo significant surface oxyfunctionalization and restructuring. Although experimental ex situ studies have probed the change in chemical environment on the surface, the structural evolution of it under varying reaction conditions has not been established. Herein, we perform global optimization structure search with a grand canonical genetic algorithm to explore the chemical space of off-stoichiometric restructuring of the h-BN surface under ambient as well as ODHP-relevant conditions. A grand canonical ensemble representation of the surface is established, and the predicted 11B solid-state NMR spectra are consistent with previous experimental reports. In addition, we investigated the relative sliding of h-BN sheets and how it influences the surface chemistry with ab initio molecular dynamics simulations. The B-O linkages on the edges are found to be significantly strained during the sliding, causing the metastable sliding configurations to have higher reactivity toward the activation of propane and water.

10.
J Am Chem Soc ; 145(48): 26350-26362, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37977567

RESUMO

The growing concern over the escalating levels of anthropogenic CO2 emissions necessitates effective strategies for its conversion to valuable chemicals and fuels. In this research, we embark on a comprehensive investigation of the nature of zirconia on a copper inverse catalyst under the conditions of CO2 hydrogenation to methanol. We employ density functional theory calculations in combination with the Grand Canonical Basin Hopping method, enabling an exploration of the free energy surface including a variable amount of adsorbates within the relevant reaction conditions. Our focus centers on a model three-atom Zr cluster on a Cu(111) surface decorated with various OH, O, and formate ligands, noted Zr3Ox (OH)y (HCOO)z/Cu(111), revealing major changes in the active site induced by various reaction parameters such as the gas pressure, temperature, conversion levels, and CO2/H2 feed ratios. Through our analysis, we have unveiled insights into the dynamic behavior of the catalyst. Specifically, under reaction conditions, we observe a large number of composition and structures with similar free energy for the catalyst, with respect to changing the type, number, and binding sites of adsorbates, suggesting that the active site should be regarded as a statistical ensemble of diverse structures that interconvert.

11.
J Am Chem Soc ; 145(10): 5834-5845, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867416

RESUMO

A combination of density functional theory (DFT) and experiments with atomically size-selected Ptn clusters deposited on indium-tin oxide (ITO) electrodes was used to examine the effects of applied potential and Ptn size on the electrocatalytic activity of Ptn (n = 1, 4, 7, and 8) for the hydrogen evolution reaction (HER). Activity is found to be negligible for isolated Pt atoms on ITO, increasing rapidly with Ptn size such that Pt7/ITO and Pt8/ITO have roughly double the activity per Pt atom compared to atoms in the surface layer of polycrystalline Pt. Both the DFT and experiment find that hydrogen under-potential deposition (Hupd) results in Ptn/ITO (n = 4, 7, and 8) adsorbing ∼2H atoms/Pt atom at the HER threshold potential, equal to ca. double the Hupd observed for Pt bulk or nanoparticles. The cluster catalysts under electrocatalytic conditions are hence best described as a Pt hydride compound, significantly departing from a metallic Pt cluster. The exception is Pt1/ITO, where H adsorption at the HER threshold potential is energetically unfavorable. The theory combines global optimization with grand canonical approaches for the influence of potential, uncovering the fact that several metastable structures contribute to the HER, changing with the applied potential. It is hence critical to include reactions of the ensemble of energetically accessible PtnHx/ITO structures to correctly predict the activity vs Ptn size and applied potential. For the small clusters, spillover of Hads from the clusters to the ITO support is significant, resulting in a competing channel for loss of Hads, particularly at slow potential scan rates.

12.
J Am Chem Soc ; 145(47): 25686-25694, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37931025

RESUMO

Hexagonal boron nitride (hBN) is a highly selective catalyst for the oxidative dehydrogenation of propane (ODHP) to propylene. Using a variety of ex situ characterization techniques, the activity of the catalyst has been attributed to the formation of an amorphous boron oxyhydroxide surface layer. The ODHP reaction mechanism proceeds via a combination of surface mediated and gas phase propagated radical reactions with the relative importance of both depending on the surface-to-void-volume ratio. Here we demonstrate the unique capability of operando X-ray Raman spectroscopy (XRS) to investigate the oxyfunctionalization of the catalyst under reaction conditions (1 mm outer diameter reactor, 500 to 550 °C, P = 30 kPa C3H8, 15 kPa O2, 56 kPa He). We probe the effect of a water cofeed on the surface of the activated catalyst and find that water removes boron oxyhydroxide from the surface, resulting in a lower reaction rate when the surface reaction dominates and an enhanced reaction rate when the gas phase contribution dominates. Computational description of the surface transformations at an atomic-level combined with high precision XRS spectra simulations with the OCEAN code rationalize the experimental observations. This work establishes XRS as a powerful technique for the investigation of light element-containing catalysts under working conditions.

13.
J Phys Chem A ; 127(25): 5324-5334, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37316977

RESUMO

The incorporation of charged groups proximal to a redox active transition metal center can impact the local electric field, altering redox behavior and enhancing catalysis. Vanadyl salen (salen = N,N'-ethylenebis(salicylideneaminato)) complexes functionalized with a crown ether containing a nonredox active metal cation (V-Na, V-K, V-Ba, V-La, V-Ce, and V-Nd) were synthesized. The electrochemical behavior of this series of complexes was investigated by cyclic voltammetry in solvents with varying polarity and dielectric constant (ε) (acetonitrile, ε = 37.5; N,N-dimethylformamide, ε = 36.7; and dichloromethane, ε = 8.93). The vanadium(V/IV) reduction potential shifted anodically with increasing cation charge compared to a complex lacking a proximal cation (ΔE1/2 > 900 mV in acetonitrile and >700 mV in dichloromethane). In contrast, the reduction potential for all vanadyl salen-crown complexes measured in N,N-dimethylformamide was insensitive to the magnitude of the cationic charge, regardless of the electrolyte or counteranion used. Titration studies of N,N-dimethylformamide into acetonitrile resulted in cathodic shifting of the vanadium(V/IV) reduction potential with increasing concentration of N,N-dimethylformamide. Binding constants of N,N-dimethylformamide (log(KDMF)) for the series of crown complexes show increased binding affinity in the order of V-La > V-Ba > V-K > (salen)V(O), indicating an enhancement of Lewis acid/base interaction with increasing cationic charge. The redox behavior of (salen)V(O) and (salen-OMe)V(O) (salen-OMe = N,N'-ethylenebis(3-methoxysalicylideneamine) was also investigated and compared to the crown-containing complexes. For (salen-OMe)V(O), a weak association of triflate salt at the vanadium(IV) oxidation state was observed through cyclic voltammetry titration experiments, and cation dissociation upon oxidation to vanadium(V) was identified. These studies demonstrate the noninnocent role of solvent coordination and cation/anion effects on redox behavior and, by extension, the local electric field.

14.
Chem Soc Rev ; 51(20): 8415-8433, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36128984

RESUMO

Developing improved methods for CO2 capture and concentration (CCC) is essential to mitigating the impact of our current emissions and can lead to carbon net negative technologies. Electrochemical approaches for CCC can achieve much higher theoretical efficiencies compared to the thermal methods that have been more commonly pursued. The use of redox carriers, or molecular species that can bind and release CO2 depending on their oxidation state, is an increasingly popular approach as carrier properties can be tailored for different applications. The key requirements for stable and efficient redox carriers are discussed in the context of chemical scaling relationships and operational conditions. Computational and experimental approaches towards developing redox carriers with optimal properties are also described.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/química , Oxirredução
15.
Angew Chem Int Ed Engl ; 62(20): e202218575, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36922903

RESUMO

The dynamic restructuring of Cu surfaces in electroreduction conditions is of fundamental interest in electrocatalysis. We decode the structural dynamics of a Cu(111) electrode under reduction conditions by joint first-principles calculations and operando electrochemical scanning tunneling microscopy (ECSTM) experiments. Combining global optimization and grand canonical density functional theory, we unravel the potential- and pH-dependent restructuring of Cu(111) in acidic electrolyte. At reductive potential, Cu(111) is covered by a high density of H atoms and, below a threshold potential, Cu adatoms are formed on the surface in a (4×4) superstructure, a restructuring unfavorable in vacuum. The strong H adsorption is the driving force for the restructuring, itself induced by the electrode potential. On the restructured surface, barriers for hydrogen evolution reaction steps are low. Restructuring in electroreduction conditions creates highly active Cu adatom sites not present on Cu(111).

16.
Angew Chem Int Ed Engl ; 62(20): e202218210, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36920979

RESUMO

We report the size-dependent activity and stability of supported Pt1,4,7,8 for electrocatalytic hydrogen evolution reaction, and show that clusters outperform polycrystalline Pt in activity, with size-dependent stability. To understand the size effects, we use DFT calculations to study the structural fluxionality under varying potentials. We show that the clusters can reshape under H coverage and populate an ensemble of states with diverse stoichiometry, structure, and thus reactivity. Both experiment and theory suggest that electrocatalytic species are hydridic states of the clusters (≈2 H/Pt). An ensemble-based kinetic model reproduces the experimental activity trend and reveals the role of metastable states. The stability trend is rationalized by chemical bonding analysis. Our joint study demonstrates the potential- and adsorbate-coverage-dependent fluxionality of subnano clusters of different sizes and offers a systematic modeling strategy to tackle the complexities.

17.
J Am Chem Soc ; 144(42): 19284-19293, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36227161

RESUMO

The rearrangement of Cu surfaces under electrochemical conditions is known to play a key role in the surface activation for major electrocatalytic reactions. Despite the extensive experimental insights into such rearrangements, from surface-sensitive spectroscopy and microscopy, the spatial and temporal resolution of these methods is insufficient to provide an atomistic picture of the electrochemical interface. Theoretical characterization has also been challenged by the diversity of restructuring configurations, surface stoichiometry, adsorbate configurations, and the effect of the electrode potential. Here, atomistic insight into the restructuring of the electrochemical interface is gained from first principles. Cu(100) restructuring under varying applied potentials and adsorbate coverages is studied by grand canonical density functional theory and global optimization techniques, as well as ab initio molecular dynamics and mechanistic calculations. We show that electroreduction conditions cause the formation of a shifted-row reconstruction on Cu(100), induced by hydrogen adsorption. The reconstruction is initiated at 1/6 ML H coverage, when the Cu-H bonding sufficiently weakens the Cu-Cu bonds between the top- and sublayer, and further stabilized at 1/3 ML when H adsorbates fill all the created 3-fold hollow sites. The simulated scanning tunneling microscopy (STM) images of the calculated reconstructed interfaces agree with experimental in situ STM. However, compared to the thermodynamic prediction, the onsets of reconstruction events in the experiment occur at more negative applied voltages. This is attributed to kinetic effects in restructuring, which we describe via different statistical models, to produce the potential- and pH-dependent surface stability diagram. This manuscript provides rich atomistic insight into surface restructuring in electroreduction conditions, which is required for the understanding and design of Cu-based materials for electrocatalytic processes. It also offers the methodology to study the problem of in situ electrode reconstruction.

18.
Inorg Chem ; 61(46): 18701-18709, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36351195

RESUMO

Pressure-induced structural transitions of the alkaline earth hexaborides, CaB6, SrB6, and BaB6, are studied theoretically using electron counting rules and density functional theory calculations. We demonstrate the applicability of gas-phase borane electron counting methods to solid-state metal borides under pressure and validate the assumptions of the rules by density functional theory (DFT) calculations. All three compounds share ambient-pressure and high-pressure structures, but BaB6 differs from CaB6 and SrB6 at intermediate pressures. The unique BaB6 phase is shown to break electron counting rules, while all other phases obey them. This anomaly is resolved by DFT, which reveals B-Ba covalency and unusual B-B π bonding under pressure. The relationships between structure and bonding can help us to understand the exotic behavior of lanthanide hexaborides and design new borides with desirable properties. Developing electron counting procedures for solids will enhance materials discovery efforts with chemical intuition.

19.
J Phys Chem A ; 126(51): 9644-9650, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36519723

RESUMO

Designing closed, laser-induced optical cycling transitions in trapped atoms or molecules is useful for quantum information processing, precision measurement, and quantum sensing. Larger molecules that feature such closed transitions are particularly desirable, as the increased degrees of freedom present new structures for optical control and enhanced measurements. The search for molecules with robust optical cycling centers is a challenge which requires design principles beyond trial-and-error. Two such principles are proposed for the particular M-O-R framework, where M is an alkaline earth metal radical, and R is a ligand: (1) Large, saturated hydrocarbons can serve as ligands, R, due to a substantial HOMO-LUMO gap that encloses the cycling transition, so long as the R group is rigid. (2) Electron-withdrawing groups, via induction, can enhance Franck-Condon factors (FCFs) of the optical cycling transition, as long as they do not disturb the locally linear structure in the M-O-R motif. With these tools in mind, larger molecules can be trapped and used as optical cycling centers, sometimes with higher FCFs than smaller molecules.

20.
Angew Chem Int Ed Engl ; 61(25): e202108501, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35352449

RESUMO

Antimicrobial peptides (AMPs) preferentially permeate prokaryotic membranes via electrostatic binding and membrane remodeling. Such action is drastically suppressed by high salt due to increased electrostatic screening, thus it is puzzling how marine AMPs can possibly work. We examine as a model system, piscidin-1, a histidine-rich marine AMP, and show that ion-histidine interactions play unanticipated roles in membrane remodeling at high salt: Histidines can simultaneously hydrogen-bond to a phosphate and coordinate with an alkali metal ion to neutralize phosphate charge, thereby facilitating multidentate bonds to lipid headgroups in order to generate saddle-splay curvature, a prerequisite to pore formation. A comparison among Na+ , K+ , and Cs+ indicates that histidine-mediated salt tolerance is ion specific. We conclude that histidine plays a unique role in enabling protein/peptide-membrane interactions that occur in marine or other high-salt environment.


Assuntos
Peptídeos Antimicrobianos , Histidina , Histidina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fosfatos , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA