Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Pept Sci ; 30(8): e3599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38567550

RESUMO

Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.


Assuntos
Glicopeptídeos , Hidrogéis , Polissacarídeos , Hidrogéis/química , Glicopeptídeos/química , Polissacarídeos/química , Elasticidade , Viscosidade , Simulação de Dinâmica Molecular , Reologia
2.
Handb Exp Pharmacol ; 284: 153-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37566121

RESUMO

In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Humanos , Preparações Farmacêuticas
3.
Small ; 19(16): e2206722, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670094

RESUMO

The rapid development of microscopic techniques over the past decades enables the establishment of single molecule fluorescence imaging as a powerful tool in biological and biomedical sciences. Single molecule fluorescence imaging allows to study the chemical, physicochemical, and biological properties of target molecules or particles by tracking their molecular position in the biological environment and determining their dynamic behavior. However, the precise determination of particle distribution and diffusivities is often challenging due to high molecule/particle densities, fast diffusion, and photobleaching/blinking of the fluorophore. A novel, accurate, and fast statistical analysis tool, Diffusion Analysis of NAnoscopic Ensembles (DANAE), that solves all these obstacles is introduced. DANAE requires no approximations or any a priori input regarding unknown system-inherent parameters, such as background distributions; a requirement that is vitally important when studying the behavior of molecules/particles in living cells. The superiority of DANAE with various data from simulations is demonstrated. As experimental applications of DANAE, membrane receptor diffusion in its natural membrane environment, and cargo mobility/distribution within nanostructured lipid nanoparticles are presented. Finally, the method is extended to two-color channel fluorescence microscopy.


Assuntos
Nanotecnologia , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Difusão
4.
Molecules ; 28(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630372

RESUMO

Phytochromes are bistable red/far-red light-responsive photoreceptor proteins found in plants, fungi, and bacteria. Light-activation of the prototypical phytochrome Cph1 from the cyanobacterium Synechocystis sp. PCC 6803 allows photoisomerization of the bilin chromophore in the photosensory module and a subsequent series of intermediate states leading from the red absorbing Pr to the far-red-absorbing Pfr state. We show here via osmotic and hydrostatic pressure-based measurements that hydration of the photoreceptor modulates the photoconversion kinetics in a controlled manner. While small osmolytes like sucrose accelerate Pfr formation, large polymer osmolytes like PEG 4000 delay the formation of Pfr. Thus, we hypothesize that an influx of mobile water into the photosensory domain is necessary for proceeding to the Pfr state. We suggest that protein hydration changes are a molecular event that occurs during photoconversion to Pfr, in addition to light activation, ultrafast electric field changes, photoisomerization, proton release and uptake, and the major conformational change leading to signal transmission, or simultaneously with one of these events. Moreover, we discuss this finding in light of the use of Cph1-PGP as a hydration sensor, e.g., for the characterization of novel hydrogel biomaterials.


Assuntos
Materiais Biocompatíveis , Fitocromo , Osmose , Transporte Biológico , Eletricidade
5.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563319

RESUMO

Chronic inflammation is one of the hallmarks of chronic wounds and is tightly coupled to immune regulation. The dysregulation of the immune system leads to continuing inflammation and impaired wound healing and, subsequently, to chronic skin wounds. In this review, we discuss the role of the immune system, the involvement of inflammatory mediators and reactive oxygen species, the complication of bacterial infections in chronic wound healing, and the still-underexplored potential of natural bioactive compounds in wound treatment. We focus on natural compounds with antioxidant, anti-inflammatory, and antibacterial activities and their mechanisms of action, as well as on recent wound treatments and therapeutic advancements capitalizing on nanotechnology or new biomaterial platforms.


Assuntos
Pele , Cicatrização , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Humanos , Inflamação/tratamento farmacológico
6.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500486

RESUMO

Phytochromes are biological red/far-red light sensors found in many organisms. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY, PGP) and the C-terminal transmitter (output) module. We recently showed a direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains of the prototypical phytochrome Cph1 PGP. These results suggested that the transient phycocyanobilin (PCB) chromophore deprotonation is closely associated with a higher protein mobility both in proximal and distal protein sites, implying a causal relationship that might be important for the global large-scale protein rearrangements. Here, we investigate the prototypical biliverdin (BV)-binding phytochrome Agp1. The structural changes at various positions in Agp1 PGP were investigated as a function of pH using picosecond time-resolved fluorescence anisotropy and site-directed fluorescence labeling of cysteine variants of Agp1 PGP. We show that the direct correlation of chromophore deprotonation with pH-dependent conformational changes does not occur in Agp1. Together with the absence of long-range effects between the PHY domain and chromophore pKa, in contrast to the findings in Cph1, our results imply phytochrome species-specific correlations between transient chromophore deprotonation and intramolecular signal transduction.


Assuntos
Fitocromo , Fitocromo/química , Conformação Molecular , Luz , Cisteína , Proteínas de Bactérias/metabolismo
7.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630673

RESUMO

Cu-catalyzed 1,3-dipolar cycloaddition of ethyl 2-azidoacetate to iodobuta-1,3-diynes and subsequent Sonogashira cross-coupling were used to synthesize a large series of new triazole-based push-pull chromophores: 4,5-bis(arylethynyl)-1H-1,2,3-triazoles. The study of their optical properties revealed that all molecules have fluorescence properties, the Stokes shift values of which exceed 150 nm. The fluorescent properties of triazoles are easily adjustable depending on the nature of the substituents attached to aryl rings of the arylethynyl moieties at the C4 and C5 atoms of the triazole core. The possibility of 4,5-bis(arylethynyl)-1,2,3-triazoles' application for labeling was demonstrated using proteins and the HEK293 cell line. The results of an MTT test on two distinct cell lines, HEK293 and HeLa, revealed the low cytotoxicity of 4,5-bis(arylethynyl)triazoles, which makes them promising fluorescent tags for labeling and tracking biomolecules.


Assuntos
Di-Inos , Triazóis , Reação de Cicloadição , Células HEK293 , Células HeLa , Humanos , Triazóis/farmacologia
8.
Angew Chem Int Ed Engl ; 60(27): 14938-14944, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33544452

RESUMO

Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching. Here, we solved this problem and present the molecular design of a dual label (DL) compound comprising a highly fluorescent dye together with an EPR spin probe, which also renders the fluorescence lifetime to be concentration sensitive. The DL can easily be coupled to the biomolecule of choice, enabling in vivo and in vitro applications. This novel approach paves the way for elegant studies ranging from fundamental biological investigations to preclinical drug research, as shown in proof-of-principle penetration experiments in human skin ex vivo.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Rodaminas/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Pele/química
9.
Biochemistry ; 59(9): 1051-1062, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32069394

RESUMO

Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.


Assuntos
Proteínas de Bactérias/metabolismo , Pigmentos Biliares/metabolismo , Fotorreceptores Microbianos/metabolismo , Fitocromo/química , Proteínas Quinases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Pigmentos Biliares/química , Histidina Quinase/metabolismo , Luz , Conformação Molecular , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/ultraestrutura , Fitocromo/metabolismo , Proteínas Quinases/química , Proteínas Quinases/ultraestrutura , Transdução de Sinais , Synechocystis/metabolismo , Tetrapirróis/metabolismo
10.
Langmuir ; 35(35): 11422-11434, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31378067

RESUMO

Biological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region. The systematic characterization of viscosity- and temperature-dependent photoisomerization properties of ICC and dPGS-ICC allowed us to determine membrane viscosities in different model systems and in living cells using fluorescence lifetime imaging (FLIM). dPGS-ICC distinguishes between ordered lipids and the onset of membrane defects in small unilamellar single lipid vesicles and is highly sensitive in the fluid phase to small changes in viscosity introduced by cholesterol. In microscopy-based viscosity measurements of large multilamellar vesicles, we observed an order of magnitude more viscous environments by dPGS-ICC, lending support to the hypothesis of heterogeneous nanoviscosity environments even in single lipid bilayers. The existence of such complex viscosity structures could explain the large variation in the apparent membrane viscosity values found in the literature, depending on technique and probe, both for model membranes and live cells. In HeLa cells, a tumor-derived cell line, our nanoparticle-based viscosity sensor detects a membrane viscosity of ∼190 cP and is able to discriminate between cell membrane and intracellular vesicle localization. Thus, our results show the versatility of the dPGS-ICC nano-conjugate in physicochemical and biomedical applications by adding a new analytical functionality to its medical properties.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Nanopartículas/química , Carbocianinas/química , Corantes Fluorescentes/química , Glicerol/química , Células HeLa , Humanos , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Transição de Fase , Polímeros/química , Viscosidade
11.
Small ; 14(23): e1800310, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29726099

RESUMO

Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity.


Assuntos
Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Imagem Óptica/métodos , Estresse Oxidativo/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , DNA/metabolismo , Ouro/toxicidade , Células HeLa , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
12.
J Biol Chem ; 291(33): 17382-93, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27268055

RESUMO

A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics.


Assuntos
Chlamydomonas reinhardtii/química , Luz , Proteínas de Plantas/química , Rodopsina/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Rodopsina/genética , Rodopsina/metabolismo
13.
Nanomedicine ; 13(1): 317-327, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27697619

RESUMO

Inflammatory disorders of the skin pose particular therapeutic challenges due to complex structural and functional alterations of the skin barrier. Penetration of several anti-inflammatory drugs is particularly problematic in psoriasis, a common dermatitis condition with epidermal hyperplasia and hyperkeratosis. Here, we tested in vivo dermal penetration and biological effects of dendritic core-multishell-nanocarriers (CMS) in a murine skin model of psoriasis and compared it to healthy skin. In both groups, CMS exclusively localized to the stratum corneum of the epidermis with only very sporadic uptake by Langerhans cells. Furthermore, penetration into the viable epidermis of nile red as a model for lipophilic compounds was enhanced by CMS. CMS proved fully biocompatible in several in vitro assays and on normal and psoriatic mouse skin. The observations support the concept of CMS as promising candidates for drug delivery in inflammatory hyperkeratotic skin disorders in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Absorção Cutânea , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
14.
Molecules ; 22(1)2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-28029135

RESUMO

The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.


Assuntos
Dendrímeros/metabolismo , Microscopia de Fluorescência/métodos , Nanomedicina/métodos , Nanopartículas/química , Espectrometria de Fluorescência/métodos , Imagem com Lapso de Tempo/métodos , Dendrímeros/síntese química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Polarização de Fluorescência , Corantes Fluorescentes/química , Nanomedicina/instrumentação , Nanopartículas/ultraestrutura , Tamanho da Partícula
15.
Biochim Biophys Acta ; 1837(5): 694-709, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24183695

RESUMO

Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Modelos Moleculares , Fótons , Retinaldeído/química , Rodopsina/química , Espectrometria de Fluorescência/métodos , Sequência de Aminoácidos , Animais , Bovinos , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Retinaldeído/metabolismo , Rodopsina/metabolismo , Espectrometria de Fluorescência/estatística & dados numéricos
16.
Mol Pharm ; 12(5): 1391-401, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25871518

RESUMO

Hyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. Besides moisturizing the skin and improving wound healing, HA facilitates topical drug absorption and is highly compatible with labile biomacromolecules. Hence, in this study we investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using fluorescence lifetime imaging microscopy (FLIM). To elucidate the interactions of HA with the stratum corneum and the skin absorption of HA itself, we combined FLIM and Fourier-transform infrared (FTIR) spectroscopy. Our results revealed distinct formulation and skin-dependent effects. In barrier deficient (tape-stripped) skin, BSA alone penetrated into dermal layers. When BSA and HA were applied together, however, penetration was restricted to the epidermis. In normal skin, penetration enhancement of BSA into the epidermis was observed when applying low molecular weight HA (5 kDa). Fluorescence resonance energy transfer analysis indicated close interactions between HA and BSA under these conditions. FTIR spectroscopic analysis of HA interactions with stratum corneum constituents showed an α-helix to ß-sheet interconversion of keratin in the stratum corneum, increased skin hydration, and intense interactions between 100 kDa HA and the skin lipids resulting in a more disordered arrangement of the latter. In conclusion, HA hydrogels restricted the delivery of biomacromolecules to the stratum corneum and viable epidermis in barrier deficient skin, and therefore seem to be potential topical drug vehicles. In contrast, HA acted as an enhancer for delivery in normal skin, probably mediated by a combination of cotransport, increased skin hydration, and modifications of the stratum corneum properties.


Assuntos
Ácido Hialurônico/química , Soroalbumina Bovina/química , Pele/metabolismo , Administração Cutânea , Animais , Bovinos , Técnicas In Vitro , Soroalbumina Bovina/metabolismo , Absorção Cutânea , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
17.
Int J Mol Sci ; 16(4): 6960-77, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25826528

RESUMO

We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown. As a model compound we have chosen a larger amphiphilic molecule (fluorescent dye ATTO-Oxa12) with a molecular weight >700 Da that was applied to excised human skin. ATTO-Oxa12 penetrated through the stratum corneum (SC) into the viable epidermis as revealed by TIRFM of cryosections. Single particle tracking of ATTO-Oxa12 within SC sheets obtained by tape stripping allowed us to gain information on the localization as well as the lateral diffusion dynamics of these molecules. ATTO-Oxa12 appeared to be highly confined in the SC lipid region between (intercellular space) or close to the envelope of the corneocytes. Three main distinct confinement sizes of 52 ± 6, 118 ± 4, and 205 ± 5 nm were determined. We conclude that for this amphiphilic model compound several pathways through the skin exist.


Assuntos
Epiderme/metabolismo , Corantes Fluorescentes/farmacocinética , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Absorção Cutânea
18.
Molecules ; 21(1): E22, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26712722

RESUMO

Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue.


Assuntos
Dendrímeros/química , Sulfatos/química , Fluorescência , Glicerol/química , Humanos , Nanopartículas/química , Tamanho da Partícula
19.
Biochim Biophys Acta ; 1827(3): 276-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23123516

RESUMO

Cytochrome c oxidase (CcO), the terminal oxidase of cellular respiration, reduces molecular oxygen to water. The mechanism of proton pumping as well as the coupling of proton and electron transfer is still not understood in this redox-linked proton pump. Eleven residues at the aqueous-exposed surfaces of CcO from Paracoccus denitrificans have been exchanged to cysteines in a two-subunit base variant to yield single reactive cysteine variants. These variants are designed to provide unique labeling sites for probes to be used in spectroscopic experiments investigating the mechanism of proton pumping in CcO. To this end we have shown that all cysteine variants are enzymatically active. Cysteine positions at the negative (N-) side of the membrane are located close to the entrance of the D- and K-proton transfer pathways that connect the N-side with the catalytic oxygen reduction site. Labeling of the pH-indicator dye fluorescein to these sites allowed us to determine the surface potential at the cytoplasmic CcO surface, which corresponds to a surface charge density of -0.5 elementary charge/1000Å(2). In addition, acid-base titrations revealed values of CcO buffer capacity. Polarity measurements of the label environment at the N-side provided (i) site-specific values indicative of a hydrophilic and a more hydrophobic environment dependent on the label position, and (ii) information on a global change to a more apolar environment upon reduction of the enzyme. Thus, the redox state of the copper and heme centers inside the hydrophobic interior of CcO affect the properties at the cytoplasmic surface.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Paracoccus denitrificans/enzimologia , Prótons , Soluções Tampão , Concentração de Íons de Hidrogênio , Oxirredução
20.
Langmuir ; 30(6): 1686-95, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24460144

RESUMO

The molecular dynamics of polymeric nanocarriers is an important parameter for controlling the interaction of nanocarrier branches with cargo. Understanding the interplay of dendritic polymer dynamics, temperature, and cargo molecule interactions should provide valuable new insight for tailoring the dendritic architecture to specific needs in nanomedicine, drug, dye, and gene delivery. Here, we have investigated polyglycerol-based core-multishell (CMS) nanotransporters with incorporated Nile Red as a fluorescent drug mimetic and CMS nanotransporters with a covalently bound fluorophore (Indocarbocyanine) using fluorescence spectroscopy methods. From time-resolved fluorescence depolarization we have obtained the rotational diffusion dynamics of the incorporated dye, the nanocarrier, and its branches as a function of temperature. UV/vis and fluorescence lifetime measurements provided additional information on the local dye environment. Our results show a distribution of the cargo Nile Red within the nanotransporter shells that depends on solvent and temperature. In particular, we show that the flexibility of the polymer branches in the unimolecular state of the nanotransporter undergoes a temperature-dependent transition which correlates with a larger space for the mobility of the incorporated hydrophobic drug mimetic Nile Red and a higher probability of cargo-solvent interactions at temperatures above 31 °C. The measurements have further revealed that a loss of the cargo molecule Nile Red occurred neither upon dilution of the CMS nanotransporters nor upon heating. Thus, the unimolecular preloaded CMS nanotransporters retain their cargo and are capable to transport and respond to temperature, thereby fulfilling important requirements for biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA