Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834984

RESUMO

The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.


Assuntos
COVID-19 , Dor Crônica , MicroRNAs , Síndrome de COVID-19 Pós-Aguda , Humanos , Dor Crônica/genética , COVID-19/complicações , COVID-19/genética , MicroRNAs/genética , Síndrome de COVID-19 Pós-Aguda/genética
2.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373348

RESUMO

Dopamine (DA) and dopamine agonists (DA-Ag) have shown antiangiogenic potential through the vascular endothelial growth factor (VEGF) pathway. They inhibit VEGF and VEGF receptor 2 (VEGFR 2) functions through the dopamine receptor D2 (D2R), preventing important angiogenesis-related processes such as proliferation, migration, and vascular permeability. However, few studies have demonstrated the antiangiogenic mechanism and efficacy of DA and DA-Ag in diseases such as cancer, endometriosis, and osteoarthritis (OA). Therefore, the objective of this review was to describe the mechanisms of the antiangiogenic action of the DA-D2R/VEGF-VEGFR 2 system and to compile related findings from experimental studies and clinical trials on cancer, endometriosis, and OA. Advanced searches were performed in PubMed, Web of Science, SciFinder, ProQuest, EBSCO, Scopus, Science Direct, Google Scholar, PubChem, NCBI Bookshelf, DrugBank, livertox, and Clinical Trials. Articles explaining the antiangiogenic effect of DA and DA-Ag in research articles, meta-analyses, books, reviews, databases, and clinical trials were considered. DA and DA-Ag have an antiangiogenic effect that could reinforce the treatment of diseases that do not yet have a fully curative treatment, such as cancer, endometriosis, and OA. In addition, DA and DA-Ag could present advantages over other angiogenic inhibitors, such as monoclonal antibodies.


Assuntos
Endometriose , Neoplasias , Osteoartrite , Feminino , Humanos , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Endometriose/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neoplasias/metabolismo , Adjuvantes Imunológicos/uso terapêutico , Osteoartrite/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo
3.
Mol Biol Rep ; 47(5): 3389-3396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32285329

RESUMO

The nociceptive effect of Levetiracetam (LEV) on the expression of 5-HT1A and 5-HT7 receptors found in the thalamus was evaluated. Thirty-six male rats (Wistar) were randomized into six groups: in the Control group without treatment; LEV50 group LEV was administered in a single dose of 50 mg/kg i.g.; in the LEV300 group LEV dose of 300 mg/kg i.g.; in the FORMALIN group the formalin test was performed; in the LEV50/FORMALIN group LEV dose of 50 mg/kg i.g and the formalin test was performed; in the LEV300/FORMALIN group LEV dose of 300 mg/kg i.g and the formalin test was performed, subsequently the thalamus was dissected in all groups. In the formalin tests LEV exhibited an antinociceptive effect in the LEV300/FORMALIN group (p < 0.05) and a pronociceptive effect in the LEV50/FORMALIN group (p < 0.001). The results obtained by Real-time PCR confirmed the expression of the 5-HT1A and 5-HT7 receptors in the thalamus, 5-HT1A receptors increased significantly in the FORMALIN group and the LEV300/FORMALIN group (p < 0.05). 5-HT7 receptors are only over expressed at a dose of 300 mg/Kg of LEV with formalin (p < 0.05). This suggests that LEV modulates the sensation of pain by controlling the expression of 5-HT1A and 5-HT7 in a tonic pain model, and that changes in the expression of 5-HT1A and 5-HT7 receptors are associated with the sensation of pain, furthermore its possibility to be used in clinical treatments for pain.


Assuntos
Levetiracetam/farmacologia , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/genética , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Levetiracetam/metabolismo , Masculino , Dor/tratamento farmacológico , Dor/genética , Medição da Dor/métodos , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Receptores de Serotonina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Tálamo/metabolismo
4.
Neurochem Res ; 40(7): 1431-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981954

RESUMO

The striatum is known to possess high levels of D1-like and D2-like receptors (D1Rs and D2Rs, respectively). We have previously shown that selective inhibition of D1Rs increases the dopaminergic metabolic response and proposed that this effect is associated with the concomitant activation of postsynaptic D2Rs by endogenous dopamine (DA). Here, we examined whether activation of D2Rs modulates the metabolism and synthesis of DA in the striatum. We used male Wistar rats to evaluate the effects of the systemic administration of a D2R agonist (bromocriptine), a D1R antagonist (SCH-23390), and the co-administration of these compounds with pargyline on the inhibition of monoamine oxidase. DA and L-3,4-dihidroxyphenylacetic acid (DOPAC) levels and 3,4-dihydroxy-L-phenylalanine (L-DOPA) content were measured using high performance liquid chromatography. The systemic administration of SCH-23390 alone, at 0.25, 0.5, 1 or 2 mg/kg, significantly (P < 0.05) increased DOPAC levels and the DOPAC/DA ratio. At 2, 4 and 8 mg/kg, the administration of bromocriptine alone significantly (P < 0.05) decreased DOPAC levels, L-DOPA content and the DOPAC/DA ratio, whereas at 2 mg/kg, it decreased DA levels. In both groups, co-administration of either SCH-23390 or bromocriptine with pargyline decreased DOPAC levels and the DOPAC/DA ratio by approximately 70 % compared to the levels observed in the control groups. In conclusion, administration of the D2R agonist bromocriptine decreased dopaminergic synthesis and metabolism in the striatum; in contrast, administration of the D1R antagonist SCH-23390 induced the opposite effects.


Assuntos
Corpo Estriado/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Animais , Corpo Estriado/metabolismo , Masculino , Ratos , Ratos Wistar
5.
Rev Invest Clin ; 67(5): 296-303, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696333

RESUMO

BACKGROUND: Prenatal protein malnutrition disrupts the pattern of maturation and development of the hippocampus and its neuroanatomy and increases inhibition of the granular cell layer of the fascia dentata. If local gamma-aminobutyric acid inter-neurons are partly responsible for inhibition of the hippocampus, it is reasonable to assume that there may be an increase in the gamma-aminobutyric acid cell population of prenatal protein malnutrition rats. OBJECTIVE: This experimental study was conducted to ascertain the effects of prenatal protein malnutrition on the density of GABAergic interneurons at the cornus ammonis and fascia dentata in rats. METHODS: Animals were investigated under two nutritional conditions: (i) prenatal protein malnutrition group fed 6% protein, and (ii) well-nourished control group fed 25% protein. Using an antibody for gamma-aminobutyric acid, immunoreactive cells (GABAergic) were assessed in the rostral-caudal direction of the dorsal hippocampus at four levels. RESULTS: (i) In 30-day-old rats with prenatal malnutrition, the fascia dentata had an average of 27% more GABAergic cells than the control group; this higher amount was not detectable at 90 days. (ii) There was a significant 18% increase in GABAergic neurons at level 1 of the cornus ammonis at 90 days of age. CONCLUSIONS: There was an increase in the population of interneurons in the fascia dentata and cornus ammonis in prenatal protein malnutrition rats. We conclude that prenatal hypoprotein malnutrition produces changes at 30 days in the fascia dentata. Results suggest that prenatal malnutrition also produces a delay in the programmed chronology of gamma-aminobutyric acid interneurons. Finally, in cornus ammonis, at 90 days of age, prenatal protein malnutrition showed an increase only at level 1; this effect may be evidenced in the long term, despite postnatal rehabilitation.


Assuntos
Hipocampo/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Desnutrição Proteico-Calórica/complicações , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Giro Denteado/metabolismo , Feminino , Interneurônios/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar
6.
Rev Invest Clin ; 66(4): 345-50, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25695300

RESUMO

BACKGROUND: Different results have been reported by various authors in studies regarding the impact of the (carbamazepine) CBZ on the auditory evoked responses. OBJECTIVE: To evaluate the changes in auditory pathway at different sound intensities with CBZ at doses 30 mg/kg, in latencies and interpeak-interval brainstem auditory evoked potentials (BAEPs) in Wistar rats. MATERIAL AND METHODS: Twenty adult male Wistar rats (body weight mean, 280-300 g) were used as subjects in this study. BAEPs elicited by stimulus of (30, 50 and 70 dB nHL) intensity and BAEP were obtained with and without CBZ treatment. RESULTS: Peak latencies of BAEPs, between groups were different, in the group with CBZ peak latencies were delaying, but we compared interpeak-intervals between groups and we found significative differences in III-V and I-V at 70 dB nHL intensity. CONCLUSIONS: Our results suggest that CBZ modifies BAEPs interpeak-intervals at 70 dB, and latencies since they were delayed. Alterations in the generators of the later waves of BAEPs underlie, AED produced changes in hearing sensitivity with a single no toxic doses. Probably CBZ causes changes in endolymphatic ion composition in the rat inner ear, provoking that latency of BAEPs were delaying, but this requires further studies.


Assuntos
Anticonvulsivantes/farmacologia , Vias Auditivas/efeitos dos fármacos , Carbamazepina/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar
7.
Rev Invest Clin ; 66(3): 247-51, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-25695241

RESUMO

INTRODUCTION: Programming the cochlear implant (CI) has always been a challenge for all medical specialists in audiology, especially in pediatric patients without language secondary profound hearing loss. For this reason are searched alternatives to achieve normal hearing with the implant during programming in the shortest time possible. OBJECTIVE: To analyze whether through modification threshold T we get faster audiological threshold, describe the differences in time found in patients with sensorineural hearing loss IC users with thresholds T at 10% modified, and T thresholds modified according to clinical responses after obtaining audiological threshold within normal parameters and report the speech coding strategies commonly used at the start of the program and to reach above the hearing threshold to language area. MATERIAL AND METHODS: We performed an observational, cross-sectional, descriptive, comparative study in which we evaluated a total of 31 patients with sensorineural hearing loss, under six years, and both sexes, of cochlear implant users of Advanced Bionics, which were divided in two groups: Group I: 15 patients with modification of thresholds T to 10%, following the manufacturer's recommendations (unmodified) and Group II: 16 patients with T threshold modification according to clinical response cochlear (modified). Were reported strategies most used speech coding in both groups at the start of the program and to reach the threshold audiological within normal parameters. RESULTS: In patients in group I (not modified) were 256 days on average to reach threshold audiological and group II (modified) was 335.6 days. Without statistic significant p = 0.197, with an average of 295.8 days for both groups and the speech coding strategy more used was the Hi-Res P with Fidelity 120, modifying both groups only one patient from power up obtaining threshold. CONCKUSIONS: It was established that thresholds T patient's subjective threshold as compared to T of 10% automatically obtained by SoundWave is not necessary since there are no statistically significant differences in relation to time to take patients implanted normal hearing threshold. The speech coding strategies more widely used and accepted by the patient was the Hi-Res P with Fidelity 120.


Assuntos
Limiar Auditivo/fisiologia , Implante Coclear , Implantes Cocleares , Perda Auditiva Neurossensorial/cirurgia , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Teste do Limiar de Recepção da Fala , Fatores de Tempo
8.
PLoS Negl Trop Dis ; 18(7): e0012302, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950061

RESUMO

BACKGROUND: Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS: Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS: A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 µm; HGINV 37 ± 5 µm; WB 28 ± 3 µm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION: The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.

9.
Rev Invest Clin ; 65(4): 336-48, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-24304735

RESUMO

After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/fisiologia , Matriz Extracelular/fisiologia , Sulfato de Queratano/fisiologia , Regeneração Nervosa/fisiologia , Tenascina/fisiologia , Animais , Humanos , Conformação Proteica , Mapas de Interação de Proteínas , Proteoglicanas
10.
Psychopharmacology (Berl) ; 240(6): 1221-1234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086286

RESUMO

RATIONALE: Dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), are the major complication in the pharmacological treatment of Parkinson's disease. LIDs induce overactivity of the glutamatergic cortico-striatal projections, and drugs that reduce glutamatergic overactivity exert antidyskinetic actions. Chronic administration of immepip, agonist at histamine H3 receptors (H3R), reduces LIDs and diminishes GABA and glutamate content in striatal dialysates (Avila-Luna et al., Psychopharmacology 236: 1937-1948, 2019). OBJECTIVES AND METHODS: In rats unilaterally lesioned with 6-hydroxydopamine in the substantia nigra pars compacta (SNc), we examined whether the chronic administration of immepip and their withdrawal modify LIDs, the effect of L-Dopa on glutamate and GABA content, and mRNA levels of dopamine D1 receptors (D1Rs) and H3Rs in the cerebral cortex and striatum. RESULTS: The administration of L-Dopa for 21 days induced LIDs. This effect was accompanied by increased GABA and glutamate levels in the cerebral cortex ipsi and contralateral to the lesioned SNc, and immepip administration prevented (GABA) or reduced (glutamate) these actions. In the striatum, GABA content increased in the ipsilateral nucleus, an effect prevented by immepip. L-Dopa administration had no significant effects on striatal glutamate levels. In lesioned and L-Dopa-treated animals, D1R mRNA decreased in the ipsilateral striatum, an effect prevented by immepip administration. CONCLUSIONS: Our results indicate that chronic H3R activation reduces LIDs and the overactivity of glutamatergic cortico-striatal projections, providing further evidence for an interaction between D1Rs and H3Rs in the cortex and striatum under normal and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Dopamina/metabolismo , Oxidopamina/toxicidade , Ácido Glutâmico/metabolismo , Corpo Estriado , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Córtex Cerebral/metabolismo , RNA Mensageiro/metabolismo
11.
Pharmaceutics ; 15(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36840015

RESUMO

Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the management of diseases related to the nervous system. However, DA receptors have been identified in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition, DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different kinds of cells. AIM: To compile the mechanism of action of DA and the main dopaminergic drugs and show the findings that support the therapeutic potential of these molecules for the treatment of neurological and non-neurological diseases considering their antioxidant and anti-inflammatory actions. METHOD: We performed a review article. An exhaustive search for information was carried out in specialized databases such as PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct, Web of Science, Bookshelf, DrugBank, Livertox, and Clinical Trials. RESULTS: We showed that DA and dopaminergic drugs have emerged for the management of neuronal and nonneuronal diseases with important therapeutic potential as anti-inflammatories and antioxidants. CONCLUSIONS: DA and DA derivatives can be an attractive treatment strategy and a promising approach to slowing the progression of disorders through repositioning.

12.
Heliyon ; 9(2): e13442, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852042

RESUMO

The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.

13.
Curr Neuropharmacol ; 21(10): 2110-2125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37326113

RESUMO

The Coronavirus disease 2019 (COVID-19) affects several tissues, including the central and peripheral nervous system. It has also been related to signs and symptoms that suggest neuroinflammation with possible effects in the short, medium, and long term. Estrogens could have a positive impact on the management of the disease, not only due to its already known immunomodulator effect, but also activating other pathways that may be important in the pathophysiology of COVID-19, such as the regulation of the virus receptor and its metabolites. In addition, they can have a positive effect on neuroinflammation secondary to pathologies other than COVID-19. The aim of this study is to analyze the molecular mechanisms that link estrogens with their possible therapeutic effect for neuroinflammation related to COVID-19. Advanced searches were performed in scientific databases as Pub- Med, ProQuest, EBSCO, the Science Citation index, and clinical trials. Estrogens have been shown to participate in the immune modulation of the response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to this mechanism, we propose that estrogens can regulate the expression and activity of the Angiotensin-converting enzyme 2 (ACE2), reestablishing its cytoprotective function, which may be limited by its interaction with SARS-CoV-2. In this proposal, estrogens and estrogenic compounds could increase the synthesis of Angiotensin-(1-7) (Ang-(1-7)) that acts through the Mas receptor (MasR) in cells that are being attacked by the virus. Estrogens can be a promising, accessible, and low-cost treatment for neuroprotection and neuroinflammation in patients with COVID-19, due to its direct immunomodulatory capacity in decreasing cytokine storm and increasing cytoprotective capacity of the axis ACE2/Ang (1-7)/MasR.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Sistema Renina-Angiotensina/fisiologia , Peptidil Dipeptidase A/metabolismo , Doenças Neuroinflamatórias , Estrogênios/uso terapêutico , Neuroproteção , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico
14.
Front Neurosci ; 17: 1304440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144211

RESUMO

The brain cortex is the structure that is typically injured in traumatic brain injury (TBI) and is anatomically connected with other brain regions, including the striatum and hypothalamus, which are associated in part with motor function and the regulation of body temperature, respectively. We investigated whether a TBI extending to the striatum could affect peripheral and core temperatures as an indicator of autonomic thermoregulatory function. Moreover, it is unknown whether thermal modulation is accompanied by hypothalamic and cortical monoamine changes in rats with motor function recovery. The animals were allocated into three groups: the sham group (sham), a TBI group with a cortical contusion alone (TBI alone), and a TBI group with an injury extending to the dorsal striatum (TBI + striatal injury). Body temperature and motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, rats were euthanized to measure the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) levels using high-performance liquid chromatography (HPLC). We observed that TBI with an injury extending to the dorsal striatum increased core and peripheral temperatures. These changes were accompanied by a sustained motor deficit lasting for 14 days. Furthermore, there were notable increases in NA and 5-HT levels in the brain cortex and hypothalamus both 3 and 20 days after injury. In contrast, rats with TBI alone showed no changes in peripheral temperatures and achieved motor function recovery by the 7th day post-injury. In conclusion, our results suggest that TBI with an injury extending to the dorsal striatum elevates both core and peripheral temperatures, causing a delay in functional recovery and increasing hypothalamic monoamine levels. The aftereffects can be attributed to the injury site and changes to the autonomic thermoregulatory functions.

15.
Curr Top Med Chem ; 22(16): 1326-1345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382723

RESUMO

The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established. However, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease and indirect inflammatory/ autoimmune origin mechanisms. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potentially promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review, we addresses the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a reduction of viral replication, and a reduction of pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.


Assuntos
Tratamento Farmacológico da COVID-19 , Canabinoides , Fármacos Neuroprotetores , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pandemias , SARS-CoV-2
16.
Neurol India ; 70(5): 1879-1886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352582

RESUMO

Pain is a well-recognized and important non-motor manifestation in Parkinson disease (PD). Painful or unpleasant sensations in PD can be classified as musculoskeletal, dystonia, akathisia, radicular, and central or primary pain; the last two are associated with neuropathic pain. Particularly, neuropathic pain in PD has not been fully clarified; therefore, it goes somewhat unnoticed, and the affected patients do not receive adequate pain treatment. The main purpose of this literature review was to identify the incidence of neuropathic pain in PD and the involvement of dopamine of this type of pain by the integration of different lines of investigation. In this review, a search was conducted using PubMed, ProQuest, EBSCO, Medline, EMBASE, and the Science Citation index for studies evaluating pain in patients with PD. The inclusion criteria were as follows: original articles that evaluated incidence and possible mechanism of neuropathic, central, and radicular pain in PD. Nine studies related to the incidence of neuropathic pain in PD suggest the activation of cerebral areas, such as the cortex, striatum, amygdala, thalamus, raphe nuclei, and locus coeruleus. Neuropathic pain is related to altered levels of dopamine, serotonin, and norepinephrine; these neurotransmitters are related to the sensitive and emotional dimensions of pain. Dopamine could cause hypersensitivity to pain, either indirectly through modulatory effects on affective pain processing and/or directly by affecting the neural activity in key areas of the brain that modulate pain. A considerable proportion of patients with PD suffer neuropathic pain; however, it has been disregarded, this has led to an inability to achieve an adequate treatment and a decrease in pain to improve the quality of life of these patients. We consider that neuropathic pain in PD is possibly induced by neurophysiological changes due to the degradation of dopaminergic neurons.


Assuntos
Neuralgia , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Dopamina , Qualidade de Vida/psicologia , Neuralgia/epidemiologia , Neuralgia/etiologia , Manejo da Dor
17.
Curr Neuropharmacol ; 20(2): 384-402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34151765

RESUMO

BACKGROUND: Emotional disorders are common comorbid affectations that exacerbate the severity and persistence of chronic pain. Specifically, depressive symptoms can lead to an excessive duration and intensity of pain. Clinical and preclinical studies have been focused on the underlying mechanisms of chronic pain and depression comorbidity and the use of antidepressants to reduce pain. AIM: This review provides an overview of the comorbid relationship of chronic pain and depression, the clinical and pre-clinical studies performed on the neurobiological aspects of pain and depression, and the use of antidepressants as analgesics. METHODS: A systematic search of literature databases was conducted according to pre-defined criteria. The authors independently conducted a focused analysis of the full-text articles. RESULTS: Studies suggest that pain and depression are highly intertwined and may co-exacerbate physical and psychological symptoms. One important biochemical basis for pain and depression focuses on the serotonergic and norepinephrine system, which have been shown to play an important role in this comorbidity. Brain structures that codify pain are also involved in mood. It is evident that using serotonergic and norepinephrine antidepressants are strategies commonly employed to mitigate pain Conclusion: Literature indicates that pain and depression impact each other and play a prominent role in the development and maintenance of other chronic symptoms. Antidepressants continue to be a major therapeutic tool for managing chronic pain. Tricyclic antidepressants (TCAs) are more effective in reducing pain than Selective Serotonin Reuptake Inhibitors (SSRIs) and Serotonin- Noradrenaline Reuptake Inhibitors (SNRIs).


Assuntos
Dor Crônica , Inibidores da Recaptação de Serotonina e Norepinefrina , Antidepressivos/uso terapêutico , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Humanos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico
18.
Antioxidants (Basel) ; 11(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36290695

RESUMO

Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM: Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD: Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION: Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.

19.
Metab Brain Dis ; 26(3): 213-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21789566

RESUMO

The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.


Assuntos
Carbamazepina/análogos & derivados , Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Convulsões/tratamento farmacológico , Serotonina/metabolismo , Fases do Sono/efeitos dos fármacos , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/uso terapêutico , Carbamazepina/administração & dosagem , Carbamazepina/uso terapêutico , Modelos Animais de Doenças , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Ácido Caínico/efeitos adversos , Masculino , Oxcarbazepina , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
20.
Heliyon ; 7(3): e06466, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33748503

RESUMO

The aging process is characterized by a gradual impairment generally caused by oxidative stress and, more specifically, sleep deprivation, which induces oxidative stress in the brain. The objective of this study was to assess the effect of three types of paradoxical sleep deprivation (PSD): 96 h of PSD (96PSD group); 192 h of PSD (192PSD group); 192 h of PSD followed by a recovery period of 20 days (192PSD + Recovery group) on an oral glucose tolerance test (OGTT), lipid peroxidation (LPO), and superoxide dismutase (SOD) and catalase (CAT) activities in the liver and pancreas of young (3-month-old) and adult (14-month-old) rats. The 96PSD and 192PSD groups of young rats showed lower glucose levels on the OGTT than the control group. In the adult rats, only the 96PSD group had lower glucose levels than the control group. However, the areas under the curve for the young and adult 192 and 192PSD + Recovery groups showed significant differences. Both LPO and SOD increased in the 192PSD and 192PSD + Recovery groups, but CAT decreased in the liver of young rats in the 192PSD group. Regarding the pancreas, LPO and SOD levels increased after 96 h of PSD. In adult animals, CAT decreased in the liver after 96 and 192 h of PSD, while LPO and SOD increased in the pancreas of the 192PSD and PSD + Recovery groups. Differences in the SOD and CAT activities in the liver and SOD activities in the pancreas were also observed between the young and adult rats and maintained across all the PSD groups. In conclusion, PSD induced differential responses that appeared to depend on the duration of the induced condition, the animals' age, and the tissue analyzed. It was found that adult rats were more susceptible to the effects of PSD than young rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA