Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Entomol ; 58(1): 246-251, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33432352

RESUMO

A parasitic outbreak caused by dermanyssoid mites in a herpetarium of the Metropolitan area of the Valley of Mexico is revealed. This outbreak was caused by Hemilaelaps triangulus (Ewing), but a second mite species, Ophionyssus natricis (Gervais), was found in low abundance. The parasitic load is analyzed, and the morphological and molecular diagnostic characters to identify each of the two species involved are given. A barcode analysis is presented, and two more molecular markers are presented and analyzed. Hemilaelaps triangulus is recorded for the first time in Mexico, and this is the first record of massive infestation on captive snakes caused by ixodorhynchid mites, and DNA sequences of ixodorhynchid mites are publicly available for the first time.


Assuntos
Surtos de Doenças/veterinária , Infestações por Ácaros/veterinária , Ácaros/classificação , Serpentes , Animais , México/epidemiologia , Infestações por Ácaros/classificação , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/parasitologia , Ácaros/anatomia & histologia , Ácaros/genética , Ácaros/fisiologia
2.
Perspect Ecol Conserv ; 18(4): 223-234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33043253

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect animals, however, the whole range of potential hosts is still unknown. This work makes an assessment of wildlife susceptibility to SARS-CoV-2 by analyzing the similarities of Angiotensin Converting Enzyme 2 (ACE2) and Transmembrane Protease, Serine 2 (TMPRSS2)-both recognized as receptors and protease for coronavirus spike protein-and the genetic variation of the viral protein spike in the recognition sites. The sequences from different mammals, birds, reptiles, and amphibians, and the sequence from SARS-CoV-2 S protein were obtained from the GenBank. Comparisons of aligned sequences were made by selecting amino acids residues of ACE2, TMPRSS2 and S protein; phylogenetic trees were reconstructed using the same sequences. The species susceptibility was ranked by substituting the values of amino acid residues for both proteins. Our results ranked primates at the top, but surprisingly, just below are carnivores, cetaceans and wild rodents, showing a relatively high potential risk, as opposed to lab rodents that are typically mammals at lower risk. Most of the sequences from birds, reptiles and amphibians occupied the lowest ranges in the analyses. Models and phylogenetic trees outputs showed the species that are more prone to getting infected with SARS-CoV-2. Interestingly, during this short pandemic period, a high haplotypic variation was observed in the RBD of the viral S protein, suggesting new risks for other hosts. Our findings are consistent with other published results reporting laboratory and natural infections in different species. Finally, urgent measures of wildlife monitoring are needed regarding SARS-CoV-2, as well as measures for avoiding or limiting human contact with wildlife, and precautionary measures to protect wildlife workers and researchers; monitoring disposal of waste and sewage than can potentially affect the environment, and designing protocols for dealing with the outbreak.

3.
Trop Med Infect Dis ; 4(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083297

RESUMO

Bats can host pathogenic organisms such as viruses and fungi, but little is known about the pathogenicity of their parasites. Hemoparasites are frequently recorded in Neotropical bats, particularly Litomosoides (Filarioidea: Onchocercidae), but their pathogenic effect on bats is scarcely known. In this work, Litomosoides microfilariae were identified in four (8%) out of 51 sampled frugivorous bats belonging to three different species: Artibeus aztecus, Artibeus jamaicensis, and Artibeus lituratus, which are located in Yautepec, Morelos, Mexico. Two infected animals showed weakness, tachypnoea, and ecchymosis on their wings. In these animals, histopathology revealed microfilariae in the blood vessels of the lung, liver, and spleen. Both animals presented exudative pneumonia with congestion and concomitant edema, in addition to moderate arterial hypertrophy. Parasitemia was quantified in blood samples of the infected animals (>3000 parasites/mL). Phylogenetic analysis placed the obtained sequence inside the Litomosoides genus, reaching over 98% identity to the related species. Due to the relevance of bats in ecosystems, any new record of their parasite repertoire offers noteworthy insights into our understanding of the ecology and impact of new parasite species in bats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA