Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neurophysiol ; 129(4): 833-842, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883767

RESUMO

Given the increasing trend of cannabis use for recreational and therapeutic purposes, a comprehensive examination of cannabis effects is warranted. The principal psychoactive constituent of cannabis, Δ-9-tetrahydrocannabinol (THC), is a potent disrupter of neurodevelopment. Nevertheless, the impact of acute exposure to THC on developing motor systems is not well-investigated. In this study, using a neurophysiological whole cell patch clamp approach we demonstrated that a 30-min exposure to THC can alter spontaneous synaptic activities at neuromuscular junctions of 5-day post-fertilized zebrafish. An increased frequency of synaptic activity and altered decay kinetic properties were documented in the THC-treated larvae. Locomotive behaviors, including swimming activity rate and C-start escape response to sound were also affected by THC. Although the THC-treated larvae displayed hyperactivity of their basal swimming levels, their escape response rate to sound stimuli was reduced. These findings suggest that acute exposure to THC can disrupt neuromuscular transmission and locomotor-driven responses in developing zebrafish.NEW & NOTEWORTHY Acute exposure to THC alters motor neuron-muscle communication and motor behaviors in developing zebrafish. Our neurophysiology data indicated that the properties of spontaneous synaptic activity at neuromuscular junctions, such as decay component of acetylcholine receptors and frequency of synaptic events, were affected by a 30-min exposure to THC. Hyperactivity and reduced responsiveness to the sound stimulus were also observed in the THC-treated larvae. Exposure to THC during early developing stages may induce motor dysfunction.


Assuntos
Dronabinol , Peixe-Zebra , Animais , Dronabinol/farmacologia , Agonistas de Receptores de Canabinoides , Transmissão Sináptica , Neurônios Motores
2.
Dev Neurosci ; 44(3): 142-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168237

RESUMO

The endocannabinoid system (ECS) is widely studied due to its interactions with cannabis and its role in modulating physiological responses. While most research has focused on the effects of cannabis on adult ECSs, recent studies have begun to investigate the role of the ECS in developing organisms. However, little is known about the spatial or temporal expression of these receptors during early development. This study combines reverse transcriptase-polymerase chain reaction (RT-PCR) with in situ hybridizations to compile a timeline of the developmental expression of six key cannabinoid receptors; cb1, cb2, trpv1, trpa1a, trpa1b, and gpr55 in zebrafish embryos, starting from as early as 6-h postfertilization (hpf) until 3 days pf (dpf). This time frame is roughly equivalent to 2-10 weeks in human embryonic development. All six genes were confirmed to be expressed within this time range and share similarities with human and rodent expression. Cb1 expression was first detected between 12 and 24 hpf in the retina and CNS, and its expression increased thereafter and was more evident in the olfactory bulb, tegmentum, hypothalamus, and gut. Cb2 expression was relatively high at the 6 and 24 hpf timepoints, as determined by RT-PCR but was undetectable at other times. Trpv1 was first detected at 1 dpf in the trigeminal (Tg) ganglia, Rohon-Beard neurons, and lateral line, and its expression increased in the first 3 dpf. Expression of trpa1a was first detected as late as 3 dpf in vagal (V) neurons, whereas trpa1b was first detected at 1 dpf associated with Tg, glossopharyngeal, and V ganglia. Expression of gpr55 was diffuse and widespread throughout the brain and head region but was undetectable elsewhere in the embryo. Thus, receptor expression was found to be enriched in the central nervous system and within sensory neurons. This work aims to serve as a foundation for further investigation on the role of cannabinoid and cannabinoid-interacting receptors in early embryonic development.


Assuntos
Canabinoides , Peixe-Zebra , Animais , Endocanabinoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Dev Neurosci ; 44(6): 518-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35728564

RESUMO

Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPAR-related proteins, known as TARPs. Little is known about the role of TARPs during development or about their function in nonmammalian organisms. Here, we report on the presence of TARP γ-4 in developing zebrafish. We find that zebrafish express 2 forms of TARP γ-4: γ-4a and γ-4b as early as 12 h post-fertilization. Sequence analysis shows that both γ-4a and γ-4b shows great level of variation particularly in the intracellular C-terminal domain compared to rat, mouse, and human γ-4. RT-qPCR showed a gradual increase in the expression of γ-4a throughout the first 5 days of development, whereas γ-4b levels were constant until day 5 when levels increased significantly. Knockdown of TARP γ-4a and γ-4b via either splice-blocking morpholinos or translation-blocking morpholinos resulted in embryos that exhibited deficits in C-start escape responses, showing reduced C-bend angles. Morphant larvae displayed reduced bouts of swimming. Whole-cell patch-clamp recordings of AMPAR-mediated currents from Mauthner cells showed a reduction in the frequency of mEPCs but no change in amplitude or kinetics. Together, these results suggest that γ-4a and γ-4b are required for proper neuronal development.


Assuntos
Proteínas de Membrana , Receptores de AMPA , Transmissão Sináptica , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Membrana/metabolismo , Morfolinos , Proteínas Nucleares/metabolismo , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
J Exp Biol ; 225(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438163

RESUMO

The endocannabinoid system (eCS) plays a critical role in a variety of homeostatic and developmental processes. Although the eCS is known to be involved in motor and sensory function, the role of endocannabinoid (eCB) signaling in sensorimotor development remains to be fully understood. In this study, the catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) were inhibited either simultaneously or individually during the first ∼24 h of zebrafish embryogenesis, and the properties of contractile events and escape responses were studied in animals ranging in age from 1 day post-fertilization (dpf) to 10 weeks. This perturbation of the eCS resulted in alterations to contractile activity at 1 dpf. Inhibition of MAGL using JZL 184 and dual inhibition of FAAH/MAGL using JZL 195 decreased escape swimming activity at 2 dpf. Treatment with JZL 195 also produced alterations in the properties of the 2 dpf short latency C-start escape response. Animals treated with JZL 195 exhibited deficits in escape responses elicited by auditory/vibrational stimuli at 5 and 6 dpf. These deficits were also present during the juvenile developmental stage (8- to 10-week-old fish), demonstrating a prolonged impact to sensory systems. These findings demonstrate that eCS perturbation affects sensorimotor function, and underscores the importance of eCB signaling in the development of motor and sensory processes.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Amidoidrolases/metabolismo , Animais , Desenvolvimento Embrionário , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/metabolismo , Peixe-Zebra/metabolismo
5.
J Cell Physiol ; 236(4): 2934-2949, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33037615

RESUMO

Transient receptor potential melastatin member 8 (TRPM8), a Ca2+ -permeable nonselective cation channel activated by cold and cooling agents, mediates allodynia. Dysfunction or abnormal expression of TRPM8 has been found in several human cancers. The role of ubiquitination in the regulation of TRPM8 function remains poorly understood. Here, we identified the ubiquitin (Ub)-ligase E3, tripartite motif-containing 4 (TRIM4), as a novel interaction partner of TRPM8 and confirmed that the TRIM4-TRPM8 interaction was mediated through the SPRY domain of TRIM4. Patch-clamp assays showed that TRIM4 negatively regulates TRPM8-mediated currents in HEK293 cells. Moreover, TRIM4 reduced the expression of TRPM8 on the cell surface by promoting the K63-linked ubiquitination of TRPM8. Further analyses revealed that the TRPM8 N-terminal lysine residue at 423 was the major ubiquitination site that mediates its functional regulation by TRIM4. A Ub-activating enzyme E1, Ub-like modifier-activating enzyme 1 (UBA1), was also found to interact with TRPM8, thereby regulating its channel function and ubiquitination. In addition, knockdown of UBA1 impaired the regulation of TRPM8 ubiquitination and function by TRIM4. Thus, this study demonstrates that TRIM4 downregulates TRPM8 via K423-mediated TRPM8 ubiquitination and requires UBA1 to regulate TRPM8.


Assuntos
Lisina/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Células MCF-7 , Ligação Proteica , Domínios Proteicos , Ratos , Deleção de Sequência , Proteínas com Motivo Tripartido/química , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo
6.
J Exp Biol ; 224(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34435626

RESUMO

The fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes are the predominant catabolic regulators of the major endocannabinoids (eCBs) anadamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively. The expression and roles of eCBs during early embryogenesis remain to be fully investigated. Here, we inhibited FAAH and MAGL in zebrafish embryos during the first 24 h of life and examined motor neuron and locomotor development at 2 and 5 days post fertilization (dpf). Application of the dual FAAH/MAGL inhibitor, JZL195 (2 µmol l-1), resulted in a reduction in primary and secondary motor neuron axonal branching. JZL195 also reduced nicotinic acetylcholine receptor (nAChR) expression at neuromuscular junctions. Application of URB597 (5 µmol l-1), a specific inhibitor of the FAAH enzyme, also decreased primary motor neuron branching but did not affect secondary motor neuron branching and nAChR expression. Interestingly, JZL184 (5 µmol l-1), a specific inhibitor of MAGL, showed no effects on motor neuron branching or nAChR expression. Co-treatment of the enzyme inhibitors with the CB1R inhibitor AM251 confirmed the involvement of CB1R in motor neuron branching. Disruption of FAAH or MAGL reduced larval swimming activity, and AM251 attenuated the JZL195- and URB597-induced locomotor changes, but not the effects of JZL184. Together, these findings indicate that inhibition of FAAH, or augmentation of AEA acting through CB1R during early development, may be responsible for locomotor deficiencies.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Amidoidrolases/genética , Animais , Monoacilglicerol Lipases/genética , Peixe-Zebra
7.
Mol Cancer ; 19(1): 118, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727463

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal malignancies and has an extremely poor diagnosis and prognosis. The development of resistance to gemcitabine is still a major challenge. The long noncoding RNA PVT1 was reported to be involved in carcinogenesis and chemoresistance; however, the mechanism by which PVT1 regulates the sensitivity of pancreatic cancer to gemcitabine remains poorly understood. METHODS: The viability of pancreatic cancer cells was assessed by MTT assay in vitro and xenograft tumor formation assay in vivo. The expression levels of PVT1 and miR-619-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting analysis and qRT-PCR were performed to assess the protein and mRNA levels of Pygo2 and ATG14, respectively. Autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of PVT1 were further investigated by gain- and loss-of-function assays in vitro. RESULTS: In the present study, we demonstrated that PVT1 was up-regulated in gemcitabine-resistant pancreatic cancer cell lines. Gain- and loss-of-function assays revealed that PVT1 impaired sensitivity to gemcitabine in vitro and in vivo. We further found that PVT1 up-regulated the expression of both Pygo2 and ATG14 and thus regulated Wnt/ß-catenin signaling and autophagic activity to overcome gemcitabine resistance through sponging miR-619-5p. Moreover, we discovered three TCF/LEF binding elements (TBEs) in the promoter region of PVT1, and activation of Wnt/ß-catenin signaling mediated by the up-regulation of Pygo2 increased PVT1 expression by direct binding to the TBE region. Furthermore, PVT1 was discovered to interact with ATG14, thus promoting assembly of the autophagy specific complex I (PtdIns3K-C1) and ATG14-dependent class III PtdIns3K activity. CONCLUSIONS: These data indicate that PVT1 plays a critical role in the sensitivity of pancreatic cancer to gemcitabine and highlight its potential as a valuable target for pancreatic cancer therapy.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Via de Sinalização Wnt , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ligação Proteica , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
J Exp Biol ; 222(Pt 16)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31253713

RESUMO

Endocannabinoids (eCBs) mediate their effects through actions on several receptors, including the cannabinoid receptors CB1R and CB2R. The role played by eCBs in the development of locomotor systems is not fully understood. In this study, we investigated the roles of the eCB system in zebrafish development by pharmacologically inhibiting CB1R and CB2R (with AM251 and AM630, respectively) in either the first or second day of development. We examined the morphology of motor neurons and we determined neuromuscular outputs by quantifying the amount of swimming in 5 days post-fertilization larvae. Blocking CB2R during the first day of development resulted in gross morphological deficits and reductions in heart rate that were greater than those following treatment with the CB1R blocker AM251. Blocking CB1Rs from 0 to 24 h post-fertilization resulted in an increase in the number of secondary and tertiary branches of primary motor neurons, whereas blocking CB2Rs had the opposite effect. Both treatments manifested in reduced levels of swimming. Additionally, blocking CB1Rs resulted in greater instances of non-inflated and partially inflated swim bladders compared with AM630 treatment, suggesting that at least some of the deficits in locomotion may result from an inability to adjust buoyancy. Together, these findings indicate that the eCB system is pivotal to the development of the locomotor system in zebrafish, and that perturbations of the eCB system early in life may have detrimental effects.


Assuntos
Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Natação/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Indóis/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
9.
Adv Exp Med Biol ; 1162: 151-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332738

RESUMO

The Cannabis plant has been used for many of years as a medicinal agent in the relief of pain and seizures. It contains approximately 540 natural compounds including more than 100 that have been identified as phytocannabinoids due to their shared chemical structure. The predominant psychotropic component is Δ9-tetrahydrocannabinol (Δ9-THC), while the major non-psychoactive ingredient is cannabidiol (CBD). These compounds have been shown to be partial agonists or antagonists at the prototypical cannabinoid receptors, CB1 and CB2. The therapeutic actions of Δ9-THC and CBD include an ability to act as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds and as protective agents in neurodegeneration. However, there is a lack of well-controlled, double blind, randomized clinical trials to provide clarity on the efficacy of either Δ9-THC or CBD as therapeutics. Moreover, the safety concerns regarding the unwanted side effects of Δ9-THC as a psychoactive agent preclude its widespread use in the clinic. The legalization of cannabis for medicinal purposes and for recreational use in some regions will allow for much needed research on the pharmacokinetics and pharmocology of medical cannabis. This brief review focuses on the use of cannabis as a medicinal agent in the treatment of pain, epilepsy and neurodegenerative diseases. Despite the paucity of information, attention is paid to the mechanisms by which medical cannabis may act to relieve pain and seizures.


Assuntos
Canabidiol/farmacologia , Cannabis , Dronabinol/farmacologia , Maconha Medicinal/farmacologia , Humanos
10.
J Am Soc Nephrol ; 27(9): 2645-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26839368

RESUMO

Autosomal dominant polycystic kidney disease pathogenesis can be recapitulated in animal models by gene mutations in or dosage alterations of polycystic kidney disease 1 (PKD1) or PKD2, demonstrating that too much and too little PKD1/PKD2 are both pathogenic. Gene dosage manipulation has become an appealing approach by which to compensate for loss or gain of gene function, but the mechanisms controlling PKD2 expression remain incompletely characterized. In this study, using cultured mammalian cells and dual-luciferase assays, we found that the 3' untranslated region (3'UTR) of PKD2 mRNA inhibits luciferase protein expression. We then identified nucleotides 691-1044, which we called 3FI, as the 3'UTR fragment necessary for repressing the expression of luciferase or PKD2 in this system. Using a pull-down assay and mass spectrometry we identified far upstream element-binding protein 1 (FUBP1) as a 3FI-binding protein. In vitro overexpression of FUBP1 inhibited the expression of PKD2 protein but not mRNA. In embryonic zebrafish, FUBP1 knockdown (KD) by morpholino injection increased PKD2 expression and alleviated fish tail curling caused by morpholino-mediated KD of PKD2. Conversely, FUBP1 overexpression by mRNA injection significantly increased pronephric cyst occurrence and tail curling in zebrafish embryos. Furthermore, FUBP1 binds directly to eukaryotic translation initiation factor 4E-binding protein 1, indicating a link to the translation initiation complex. These results show that FUBP1 binds 3FI in the PKD2 3'UTR to inhibit PKD2 translation, regulating zebrafish disease phenotypes associated with PKD2 KD.


Assuntos
Regiões 3' não Traduzidas/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biossíntese de Proteínas , Canais de Cátion TRPP/genética , Animais , Células Cultivadas , Proteínas de Ligação a RNA , Peixe-Zebra
11.
Biology (Basel) ; 13(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38534438

RESUMO

Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.

12.
Biomed Pharmacother ; 173: 116372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432129

RESUMO

An increasing number of studies have shown that FAM83A, a member of the family with sequence similarity 83 (FAM83), which consists of eight members, is a key tumor therapeutic target involved in multiple signaling pathways. It has been reported that FAM83A plays essential roles in the regulation of Wnt/ß-catenin, EGFR, MAPK, EMT, and other signaling pathways and physiological processes in models of pancreatic cancer, lung cancer, breast cancer, and other malignant tumors. Moreover, the expression of FAM83A could be significantly affected by multiple noncoding RNAs that are dysregulated in malignant tumors, the dysregulation of which is essential for the malignant process. Among these noncoding RNAs, the most noteworthy is the antisense long noncoding (Lnc) RNA of FAM83A itself (FAM83A-AS1), indicating an outstanding synergistic carcinogenic effect between FAM83A and FAM83A-AS1. In the present study, the specific mechanisms by which FAM83A and FAM83A-AS1 cofunction in the Wnt/ß-catenin and EGFR signaling pathways were reviewed in detail, which will guide subsequent research. We also described the applications of FAM83A and FAM83A-AS1 in tumor therapy and provided a certain theoretical basis for subsequent drug target development and combination therapy strategies.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo
13.
Cell Death Discov ; 10(1): 327, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019857

RESUMO

tRNA is the RNA type that undergoes the most modifications among known RNA, and in recent years, tRNA methylation has emerged as a crucial process in regulating gene translation. Dysregulation of tRNA abundance occurs in cancer cells, along with increased expression and activity of tRNA methyltransferases to raise the level of tRNA modification and stability. This leads to hijacking of translation and synthesis of multiple proteins associated with tumor proliferation, metastasis, invasion, autophagy, chemotherapy resistance, and metabolic reprogramming. In this review, we provide an overview of current research on tRNA methylation in cancer to clarify its involvement in human malignancies and establish a theoretical framework for future therapeutic interventions targeting tRNA methylation processes.

14.
Sci Rep ; 14(1): 17394, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075121

RESUMO

The prevalence of non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers, with the Wnt/ß-catenin signaling pathway exhibiting robust activation in this particular subtype. The expression of FAM83A (family with sequence similarity 83, member A) has been found to be significantly upregulated in lung cancer, leading to the stabilization of ß-catenin and activation of the Wnt signaling pathway. In this study, we conducted a screening of down-regulated miRNAs in lung cancer with FAM83A as the target. Ultimately, we identified miR-1 as a negative regulator of FAM83A and confirmed that FAM83A is a direct target gene of miR-1 through dual luciferase reporter assays. The overexpression of miR-1 significantly attenuated the expression level of FAM83A and suppressed the Wnt signaling pathway, leading to a reduction in the expression levels of downstream target genes AXIN2, CyclinD1, and C-MYC. Additionally, it decreased the nuclear translocation of ß-catenin. In addition, overexpression of miR-1 accelerated the degradation of ß-catenin by inhibiting FAM83A, promoted the assembly of ß-catenin degradation complex, and inhibited the proliferation, migration and invasion of NSCLC cells. In summary, miR-1 may be a potential candidate miRNA for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , Proteínas de Neoplasias , Via de Sinalização Wnt , beta Catenina , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Via de Sinalização Wnt/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Células A549
15.
Adv Biol (Weinh) ; 8(5): e2300117, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379270

RESUMO

The incidence of Hepatocellular carcinoma (HCC) and HCC-related deaths have remarkably increased over the recent decades. It has been reported that ß-catenin activation can be frequently observed in HCC cases. This study identified the integrin-linked kinase-associated phosphatase (ILKAP) as a novel ß-catenin-interacting protein. ILKAP is localized both in the nucleus and cytoplasm and regulates the WNT pathway in different ways. First, it is demonstrated that ILKAP activates the WNT pathway in HCC cells by increasing the protein level of ß-catenin and other proteins associated with the WNT signaling, such as c-Myc and CyclinD1. Next, it is shown that ILKAP promotes the metastasis of HCC both in vitro and in vivo in a zebrafish xenograft model. It is also found that ILKAP dephosphorylates the GSK3ß and CK1, contributing to the reduced ubiquitination of ß-catenin. Furthermore, it is identified that ILKAP functions by mediating binding between TCF4 and ß-catenin to enhance expression of WNT target genes. Taken together, the study demonstrates a critical function of ILKAP in metastasis of HCC, since ILKAP is crucial for the activation of the WNT pathway via stabilization of ß-catenin and increased binding between TCF4 and ß-catenin.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfoproteínas Fosfatases , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Metástase Neoplásica , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Via de Sinalização Wnt/fisiologia , Peixe-Zebra , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo
16.
Neurobiol Dis ; 55: 11-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23523635

RESUMO

The function of the cellular prion protein (PrP(C)) in healthy brains remains poorly understood, in part because Prnp knockout mice are viable. On the other hand, transient knockdown of Prnp homologs in zebrafish (including two paralogs, prp1 and prp2) has suggested that PrP(C) is required for CNS development, cell adhesion, and neuroprotection. It has been argued that zebrafish Prp2 is most similar to mammalian PrP(C), yet it has remained intransigent to the most thorough confirmations of reagent specificity during knockdown. Thus we investigated the role of prp2 using targeted gene disruption via zinc finger nucleases. Prp2(-/-) zebrafish were viable and did not display overt developmental phenotypes. Back-crossing female prp2(-/-) fish ruled out a role for maternal mRNA contributions. Prp2(-/-) larvae were found to have increased seizure-like behavior following exposure to the convulsant pentylenetetrazol (PTZ), as compared to wild type fish. In situ recordings from intact hindbrains demonstrated that prp2 regulates closing of N-Methyl-d-aspartate (NMDA) receptors, concomitant with neuroprotection during glutamate excitotoxicity. Overall, the knockout of Prp2 function in zebrafish independently confirmed hypothesized roles for PrP, identifying deeply conserved functions in post-developmental regulation of neuron excitability that are consequential to the etiology of prion and Alzheimer diseases.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação/genética , Neurônios/metabolismo , Príons/genética , Fatores Etários , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/fisiopatologia , Biblioteca Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Camundongos , Mutagênese Sítio-Dirigida , Pentilenotetrazol/toxicidade , Fenótipo , Receptores de N-Metil-D-Aspartato/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Dedos de Zinco/genética
17.
Learn Mem ; 19(11): 535-42, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077334

RESUMO

Encoding new information requires dynamic changes in synaptic strength. The brain can boost synaptic plasticity through the secretion of neuromodulatory substances, including acetylcholine and noradrenaline. Considerable effort has focused on elucidating how neuromodulatory substances alter synaptic properties. However, determination of the potential synergistic interactions between different neuromodulatory systems remains incomplete. Previous results indicate that coactivation of ß-adrenergic and cholinergic receptors facilitated the conversion of STP to LTP through an extracellular signal-regulated kinase (ERK)-dependent mechanism. ERK signaling has been linked to synaptically localized translation regulation. Thus, we hypothesized that costimulation of noradrenergic and cholinergic receptors could initiate the transformation of STP to LTP through up-regulation of protein synthesis. Our results indicate that a protocol which yields STP (5 Hz, 5 sec) when paired with coapplication of the ß-adrenergic agonist, isoproterenol (ISO), and the cholinergic agonist, carbachol (CCh), induces translation-dependent LTP in mouse CA1. This form of LTP requires both ß1-adrenergic and M1 muscarinic receptor activation, as blocking either receptor subtype prevented LTP induction. Blocking ERK, mTOR, or translation reduced the expression of LTP induced with ISO + CCh. Taken together, our data demonstrate that coactivation of ß-adrenergic and muscarinic receptors facilitates the conversion of STP to LTP through a mechanism requiring translation initiation.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores Muscarínicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Biossíntese de Proteínas
18.
Physiol Rep ; 11(1): e15565, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636759

RESUMO

The endocannabinoid system (eCS) plays critical roles in locomotor function and motor development; however, the roles of non-canonical cannabinoid receptor systems such as transient receptor potential (TRP) channels and the Sonic Hedgehog (SHH) signaling pathway in conjunction with the eCS in sensorimotor development remains enigmatic. To investigate the involvement of canonical and non-canonical cannabinoid receptors, TRP channels, and the SHH pathway in the development of sensorimotor function in zebrafish, we treated developing animals with pharmacological inhibitors of the CB1R, CB2R, TRPA1/TRPV1/TRPM8, and a smoothened (SMO) agonist, along with inhibitors of the eCS catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) during the first ~24 h of zebrafish embryogenesis. Locomotor function was examined by assessing touch-evoked escape swimming at 2 days post-fertilization. We report that FAAH inhibition had no effect on swimming while MAGL inhibition using JZL 184 reduced swimming distance and the dual FAAH/MAGL inhibitor JZL 195 impaired swimming distance and mean swimming velocity. The CB1R antagonist AM 251 prevented locomotor deficits caused by eCS perturbation but the CB2R antagonist AM 630 did not. Inhibition of TRPA1/TRPV1/TRPM8 using AMG 9090 rescued the locomotor reductions caused by FAAH/MAGL inhibition, but not by MAGL inhibition alone. The SMO agonist purmorphamine attenuated the effects of JZL 184 and JZL 195 on swimming distance, but not mean velocity. Together, these findings provide one of the first investigations examining the interactions between the eCS and its non-canonical receptor systems in vertebrate motor development.


Assuntos
Endocanabinoides , Canais de Potencial de Receptor Transitório , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Proteínas Hedgehog/metabolismo , Receptores de Canabinoides/metabolismo , Peixe-Zebra/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Monoacilglicerol Lipases/metabolismo , Transdução de Sinais , Inibidores Enzimáticos/farmacologia
19.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119537, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463638

RESUMO

Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética
20.
Cells ; 12(8)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37190041

RESUMO

Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.


Assuntos
Autofagossomos , Proteínas Relacionadas à Autofagia , Autofagia , Membrana Celular , Proteólise , Membrana Celular/química , Membrana Celular/metabolismo , Agregados Proteicos , Autofagossomos/química , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Domínios Proteicos , Bicamadas Lipídicas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA