Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26583, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434048

RESUMO

In this manuscript, we introduce a novel methodology for modeling acoustic units within a mobile architecture, employing a synergistic combination of various motivating techniques, including deep learning, sparse coding, and wavelet networks. The core concept involves constructing a Deep Sparse Wavelet Network (DSWN) through the integration of stacked wavelet autoencoders. The DSWN is designed to classify a specific class and discern it from other classes within a dataset of acoustic units. Mel-frequency cepstral coefficients (MFCC) and perceptual linear predictive (PLP) features are utilized for encoding speech units. This approach is tailored to leverage the computational capabilities of mobile devices by establishing deep networks with minimal connections, thereby immediately reducing computational overhead. The experimental findings demonstrate the efficacy of our system when applied to a segmented corpus of Arabic words. Notwithstanding promising results, we will explore the limitations of our methodology. One limitation concerns the use of a specific dataset of Arabic words. The generalizability of the sparse deep wavelet network (DSWN) to various contexts requires further investigation "We will evaluate the impact of speech variations, such as accents, on the performance of our model, for a nuanced understanding.

2.
Heliyon ; 10(7): e27860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689959

RESUMO

Time series forecasting across different domains has received massive attention as it eases intelligent decision-making activities. Recurrent neural networks and various deep learning algorithms have been applied to modeling and forecasting multivariate time series data. Due to intricate non-linear patterns and significant variations in the randomness of characteristics across various categories of real-world time series data, achieving effectiveness and robustness simultaneously poses a considerable challenge for specific deep-learning models. We have proposed a novel prediction framework with a multi-phase feature selection technique, a long short-term memory-based autoencoder, and a temporal convolution-based autoencoder to fill this gap. The multi-phase feature selection is applied to retrieve the optimal feature selection and optimal lag window length for different features. Moreover, the customized stacked autoencoder strategy is employed in the model. The first autoencoder is used to resolve the random weight initialization problem. Additionally, the second autoencoder models the temporal relation between non-linear correlated features with convolution networks and recurrent neural networks. Finally, the model's ability to generalize, predict accurately, and perform effectively is validated through experimentation with three distinct real-world time series datasets. In this study, we conducted experiments on three real-world datasets: Energy Appliances, Beijing PM2.5 Concentration, and Solar Radiation. The Energy Appliances dataset consists of 29 attributes with a training size of 15,464 instances and a testing size of 4239 instances. For the Beijing PM2.5 Concentration dataset, there are 18 attributes, with 34,952 instances in the training set and 8760 instances in the testing set. The Solar Radiation dataset comprises 11 attributes, with 22,857 instances in the training set and 9797 instances in the testing set. The experimental setup involved evaluating the performance of forecasting models using two distinct error measures: root mean square error and mean absolute error. To ensure robust evaluation, the errors were calculated at the identical scale of the data. The results of the experiments demonstrate the superiority of the proposed model compared to existing models, as evidenced by significant advantages in various metrics such as mean squared error and mean absolute error. For PM2.5 air quality data, the proposed model's mean absolute error is 7.51 over 12.45, about ∼40% improvement. Similarly, the mean square error for the dataset is improved from 23.75 to 11.62, which is ∼51%of improvement. For the solar radiation dataset, the proposed model resulted in ∼34.7% improvement in means squared error and ∼75% in mean absolute error. The recommended framework demonstrates outstanding capabilities in generalization and outperforms datasets spanning multiple indigenous domains.

3.
Comput Intell Neurosci ; 2022: 8044887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785059

RESUMO

In this paper, a new classification approach of breast cancer based on Fully Convolutional Networks (FCNs) and Beta Wavelet Autoencoder (BWAE) is presented. FCN, as a powerful image segmentation model, is used to extract the relevant information from mammography images. It will identify the relevant zones to model while WAE is used to model the extracted information for these zones. In fact, WAE has proven its superiority to the majority of the features extraction approaches. The fusion of these two techniques have improved the feature extraction phase and this by keeping and modeling only the relevant and useful features for the identification and description of breast masses. The experimental results showed the effectiveness of our proposed method which has given very encouraging results in comparison with the states of the art approaches on the same mammographic image base. A precision rate of 94% for benign and 93% for malignant was achieved with a recall rate of 92% for benign and 95% for malignant. For the normal case, we were able to reach a rate of 100%.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA