Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(20): 3057-3071, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544749

RESUMO

The double proton transfer (DPT) reaction between pyrazole and guanidine, a concerted reaction but strongly asynchronous and presenting a "plateau transition region", has been theoretically reinvestigated in the presence of an external uniform electric field. First, we computed the reaction path by DFT and proposed a very detailed description of the constitutive electronic events, based on the ELF topology and the bond evolution theory. Then, we studied the effect of an oriented external electric field (OEEF) on the reaction mechanism, for an OEEF oriented along the proton transfer axis. We observe that in one direction, the DPT reaction can be transformed into a stepwise reaction, going through a stabilized single proton transferred intermediate. Contrarily, the two proton transfers occur simultaneously when the electric field is applied in the opposite direction. In the latter case, the order in which the two protons are transferred in the same elementary step can even be reversed if the OEEF is intense enough. Finally, it has been shown that the evolution of the double proton transfer reaction in the presence of an electric field could be quantitatively anticipated by analyzing the ELF value at the bifurcation point between V(A, H) proton donor and V(B) proton acceptor of the double hydrogen bonded complex in the entrance channel.

2.
Chemistry ; 23(27): 6504-6508, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28324628

RESUMO

Transamination of [Co{N(SiMe3 )2 }2 ]2 with C6 H4 (NHSiiPr3 )2 gave the centrosymmetric trinuclear [{Coter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Coint ] (1) (Coter , Coint =terminal, internal Co, respectively), with 3-coordinate Coter , and Coint "sandwiched" between the o-phenylenes of the two ligands; experimental and computational data support CoII centres and ditopic o-amido-imino-cyclohexen-allyl ligands; magnetic studies reveal intermetallic ferromagnetic interactions and single-molecule magnet (SMM) character. One-electron reduction of 1 yielded the salt [K(18-crown-6)(THF)2 ][{Coter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Coint ] (4) with the anion isostructural to 1. The centrosymmetric Fe complex [{Feter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Feint ] (5), analogous to 1, was also obtained.

3.
Chemistry ; 22(15): 5295-308, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26918954

RESUMO

Numerous studies have underlined the putative diradical character of π-conjugated molecules that can be described by closed-shell Lewis structures, for instance, p-dimethylene p-n phenylenes, or long polyacenes. In the latter compounds, the only way to save the aromaticity of the six-membered rings is to give up the Lewis electron pairing in the singlet biradical ground state. The present work considers the possibility of doing the same by using the basic C2 units of carbo-meric architectures. A series of acyclic and cyclic carbo-meric architectures is studied by using UB3LYP DFT broken-symmetry calculations, including spin decontaminations and subsequent geometry optimization of the singlet diradical. The C2 units are shown to stabilize the singlet biradical by spin delocalization, two of them playing approximately the same role as one radical-insulating 1,4 phenylene moiety. The results are generalized to the investigation of open-shell polyradical singlet states of rigid hydrocarbon structures, the symmetry and rigidity of which can assist cooperativity and self spin polarization effect. Several synthesis targets with challenging magnetic/spin properties are suggested in the carbo-mer series.

4.
Inorg Chem ; 54(6): 2960-9, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25714128

RESUMO

The missing entry, namely, the "C-anagostic" or η(1)-C interaction, closing the agostic-anagostic series of metal-CH(aryl) interactions is found in a bis(amidiniophosphine) P(CH)P pincer rhodium complex. The three entries, namely, agostic η(2)-(C,H), anagostic (related to hydrogen bonding, thus recoined here as "H-anagostic"), and C-anagostic interactions, are unambiguously characterized by electron localization function (ELF) topological analysis. Other theoretical tools such as noncovalent interaction (NCI) analysis and multicenter electron delocalization indices (MCIs) support the ELF characterization. A η(2)-(C,H) agostic interaction is evidenced by a disynaptic V(C,H) or trisynaptic V(M,C,H) ELF basin with a significant quantum topological atoms in molecules (QTAIM) atomic contribution of the metal M and a large covariance (in absolute value) with the metal core basin C(M). The C-anagostic η(1)-C interaction is characterized by a disynaptic V(M,C) basin, a weak covariance (in absolute value) of V(C,H) and C(M) populations, and a negligible QTAIM atomic contribution of M to V(C,H). The relevance of these ELF signatures is evidenced in a selected series of related rhodium and osmium complexes.

5.
Phys Chem Chem Phys ; 17(14): 9258-81, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25760795

RESUMO

Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes.

6.
Phys Chem Chem Phys ; 15(30): 12602-9, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23812504

RESUMO

The nature of chemical bonding in four classes of boron-containing compounds has been investigated using two topological approaches: the "quantum theory of atoms in molecules (QTAIM)" and "electron localization function (ELF)". It has been shown that the bonding in these compounds could be described in terms of familiar schemes (covalent single, double or triple bonds, dative bond, etc.) and be rationalized from the QTAIM tools. The ELF analysis is the bridge between two worlds: classical donor-acceptor and delocalization in the one hand, and the quantum chemical concepts obtained from the charge and its Laplacian topology. Particularly, we have shown that: (1) in the case of boron-boron bonding, although the V(B,B) basins are similar to the V(C,C) ones, but the V(B,B) population is always smaller than the corresponding V(C,C). (2) In the planar tetracoordinate boron species, each boron atom is characterized by three chemical bonds despite four neighboring atoms. (3). In the [RuH2(η(2):η(2)-H2BMes)(PCy3)2] compound, the B-Ru bonding belongs to the closed-shell interaction, and there is no BCP between the hydrogen bridge atoms (H(B)) and the ruthenium center despite the close contact of the atoms. (4) In the case of the XH···M···HX hydrogen bonding, we found a complex bonding mode involving not only the two hydrogen atoms, but also the two boron atoms. The presence of an RCP in the center of the B-H-Cr-H-B five-membered cycle confers to the compound the potential to evolve under perturbation.

7.
J Phys Chem A ; 117(21): 4462-71, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23627446

RESUMO

Two OTi-N2 complexes, experimentally observed in the TiO + N2 reaction, have been theoretically studied using several density functionals as well as ab initio approaches and various basis sets. The benchmark results calculated with coupled-cluster singles, doubles, and perturbative triples CCSD(T) and sufficiently large correlation-consistent basis set were used to assess the performance of other theoretical models, especially four density functional families, pure functional, hybrid, double-hybrid, and long-range corrected ones. It has been shown that, out of twenty-three density functionals used in this work, only three functionals, namely TPSS0, LC-TPSS, and B2PLYP, are able to reproduce the CC-reference data quantitatively. Particularly, the B2PLYP double-hybrid (with or without addition of empirical dispersion) is the most promising functional, providing the closest results to the reference ones. The nature of bonding within products has been investigated using two topological techniques and a localized orbital approach.

8.
J Phys Chem A ; 117(8): 1697-705, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23350717

RESUMO

The reaction of atomic titanium with nitrous oxide has been reinvestigated using matrix isolation in solid neon coupled to infrared spectroscopy and by quantum chemical methods. Our technique of sublimation of Ti atoms from a filament heated at about 1500 °C allowed the formation of three species: one Ti-N(2)O pair of van der Waals (vdW) type characterized by small red shift with respect to N(2)O monomer, and two isomers of OTi-N(2) pair where N(2) is in interaction with the OTi moiety either with end-on or side-on structure. Interconversion between these structures has been performed with several wavelengths. In the visible and near-ultraviolet the conversion vdW → OTi-N(2) (end-on) is observed with characteristic times strongly varying according to the wavelength. In the near-infrared the conversion OTi-N(2) (end-on) → OTi-N(2) (side-on) occurs, the vdW species remaining unchanged. These selectivities allow 8, 6, and 4 vibrational transitions to be assigned for vdW, (3)[OTi(η(1)-NN)] (end-on), and (1)[OTi(η(2)-NN)] (side-on), respectively. Electronic and geometrical structures are also investigated with double-hybrid functionals. It has been shown that the side-on geometry corresponds to the ground state of (1)[OTi(η(2)-NN)] in the singlet electronic state. The theoretical vibrational analysis supports well the experimental attributions.

9.
J Mol Model ; 26(5): 94, 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248314

RESUMO

Beryllium bonding is actually a subclass of secondary bonding. Similar to the case of halogen bonding, the σ- and π-holes on the Be atom of the monomers give in zeroth approximation the direction of electrophilic attack favorable to the formation of beryllium bonds. The nature of beryllium bonding is purely electrostatic so that the symmetry-adapted perturbation theory energy decomposition perfectly explains the relevance of the polarization and dispersion contribution on the formation of the beryllium bond.

10.
J Phys Chem A ; 111(40): 10055-61, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17867658

RESUMO

The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperature have been investigated. High concentration studies of water (0.01%-4%) and subsequent annealing lead to the formation of the ternary CH3Cl:(H2O)2 complex. Detailed vibrational assignments were made on the observed spectra of water and deuterated water engaged in the complex. In parallel, structural, energetic, and vibrational properties of the complex have been studied at the second-order Møller-Plesset perturbation theory using several basis sets. Anaharmonic correction to the vibrational frequencies has been done with the standard second-order perturbation approach. It was shown that the ground state of the complex has a cyclic form for which the nonadditive three-body contribution was found to be around 10% of the interaction energy.

11.
J Phys Chem A ; 110(41): 11617-26, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17034155

RESUMO

The IR spectra of H2O+NO, HDO+NO, and D2O+NO, isolated in solid neon at low temperature have been investigated. Concentration effects and detailed vibrational analysis of deuterated and partially deuterated species allowed identification of three 1:1 HDO-NO species, two 1:1 D2O-NO species, and only one 1:1 H2O-NO complex. From comparison between the experimental spectra and the results of DFT calculations, it appeared that two different types of weakly bound complexes between water and nitric oxide can be formed in a neon matrix. The first species is a 1:1 complex where bonding occurs between water hydrogen and nitric oxide nitrogen, in which OH-N and OD-N intermolecular bonds are engaged. For this complex only DOD-NO, HOD-NO, and DOH-NO isotopic species have been experimentally detected and no IR bands of HOH-NO were observed. This result could be explained by the fact that the dissociation energy of HOH-NO is lower than those of DOD-NO, HOD-NO and DOH-NO. For the second detected 1:1 H2O-NO complex and its isotopic variants, the H2O-NO potential surface was explored systematically at the B3LYP level, but no stable species corresponding to the complex could be calculated. The structure of the second observed 1:1 H2O-NO complex results from columbic attractions between water and nitric oxide and could be stabilized only in matrix, probably by interaction between NO, water and (Ne)n.

12.
J Phys Chem A ; 109(45): 10273-9, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833321

RESUMO

The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperatures have been investigated. The CH3Cl + H2O system is remarkable because of its propensity to form CH3Cl:H2O and CH3Cl:(H2O)n (n > or = 2) complexes. We focus here on the CH3Cl:H2O species. Low concentration studies (0.01-0.5%) and subsequent annealing lead to formation of the 1:1 CH3Cl:H2O complex with O-H. . .Cl-C or O. . .H-C intermolecular hydrogen bonds. Vibrational modes of this complex have been detected. In addition, spectra of D2O + CH3Cl and HDO + CH3Cl have also been recorded. A detailed vibrational analysis of partially deuterated species shows that HDO is exclusively D bonded to CH3Cl. This is a consequence of the preference for HDO to form a deuterium bonding complex rather than a hydrogen bonding one.

13.
J Phys Chem A ; 109(48): 10880-5, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16331931

RESUMO

Infrared spectra of the CH(3)Cl:NO complex isolated in solid neon have been investigated. Most of the vibrational modes of the complex have been detected. The weak interaction between NO and CH(3)Cl in CH(3)Cl:NO is responsible for small shifts of the vibrational mode frequencies of both CH(3)Cl and NO molecules. The measured shifts range between -3.2 and + 3.8 cm(-1). On the basis of DFT calculations, different geometries have been explored for the complex, and it has been shown that the most stable structure is of C(1) symmetry. The calculated frequency shifts match well the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA