Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Genet ; 19(2): e1010606, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745687

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by progressive loss of motor neurons and there is currently no effective therapy. Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein 43 kDa (TDP-43) within the CNS is a pathological hallmark in sporadic ALS and prion-like propagation of pathogenic TDP-43 is thought to be implicated in disease progression. However, cell-to-cell transmission of pathogenic TDP-43 in the human CNS has not been confirmed experimentally. Here we used induced pluripotent stem cells (iPSCs)-derived cerebral organoids as recipient CNS tissue model that are anatomically relevant human brain. We injected postmortem spinal cord protein extracts individually from three non-ALS or five sporadic ALS patients containing pathogenic TDP-43 into the cerebral organoids to validate the templated propagation and spreading of TDP-43 pathology in human CNS tissue. We first demonstrated that the administration of spinal cord extracts from an ALS patient induced the formation of TDP-43 pathology that progressively spread in a time-dependent manner in cerebral organoids, suggesting that pathogenic TDP-43 from ALS functioned as seeds and propagated cell-to-cell to form de novo TDP-43 pathology. We also reported that the administration of ALS patient-derived protein extracts caused astrocyte proliferation to form astrogliosis in cerebral organoids, reproducing the pathological feature seen in ALS. Moreover, we showed pathogenic TDP-43 induced cellular apoptosis and that TDP-43 pathology correlated with genomic damage due to DNA double-strand breaks. Thus, our results provide evidence that patient-derived pathogenic TDP-43 can mimic the prion-like propagation of TDP-43 pathology in human CNS tissue. Our findings indicate that our assays with human cerebral organoids that replicate ALS pathophysiology have a promising strategy for creating readouts that could be used in future drug discovery efforts against ALS.


Assuntos
Esclerose Lateral Amiotrófica , Príons , Humanos , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Príons/metabolismo , Organoides/metabolismo
2.
Mov Disord ; 38(7): 1350-1355, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148456

RESUMO

BACKGROUND: Epidemiological studies suggested an association between Parkinson's disease (PD) and type 2 diabetes, but less is known about type 1 diabetes (T1D) and PD. OBJECTIVE: This study sought to explore the association between T1D and PD. METHODS: We used Mendelian randomization, linkage disequilibrium score regression, and multi-tissue transcriptome-wide analysis to examine the association between PD and T1D. RESULTS: Mendelian randomization showed a potentially protective role of T1D for PD risk (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.94-0.99; P = 0.039), as well as motor (OR, 0.94; 95% CI, 0.88-0.99; P = 0.044) and cognitive progression (OR, 1.50; 95% CI, 1.08-2.09; P = 0.015). We further found a negative genetic correlation between T1D and PD (rg = -0.17; P = 0.016), and we identified eight genes in cross-tissue transcriptome-wide analysis that were associated with both traits. CONCLUSIONS: Our results suggest a potential genetic link between T1D and PD risk and progression. Larger comprehensive epidemiological and genetic studies are required to validate our findings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Fenótipo
3.
BMC Med ; 20(1): 382, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36320012

RESUMO

BACKGROUND: Epidemiological studies have reported an association between amyotrophic lateral sclerosis (ALS) and different autoimmune disorders. This study aims to explore the causal relationship between autoimmune disorders and ALS using Mendelian randomization (MR). METHODS: To test the genetically predicted effects of liability towards immune-related outcomes on ALS risk, we used summary statistics from the largest European genome-wide association studies (GWAS) for these disorders in a two-sample MR setting. To do this, we extracted single nucleotide polymorphisms (SNPs) from the GWAS, which strongly associated with the 12 traits, and queried their effects in a large European ALS GWAS (27,265 cases and 110,881 controls). To avoid bias in our MR instruments related to the complex linkage disequilibrium structure of the human leukocyte antigen (HLA) region, we excluded SNPs within this region from the analyses. We computed inverse-variance weighted (IVW) MR estimates and undertook sensitivity analyses using MR methods robust to horizontal pleiotropy. We also performed a reverse MR analysis testing the causal effects of ALS on the above autoimmune traits. RESULTS: After applying Bonferroni correction for multiple testing, our MR analyses showed that the liability to autoimmune disorders does not affect ALS risk. Our reverse MR analysis also did not support the effects of liability to ALS on other autoimmune disorders. The results of the main IVW MR analyses were generally supported by our sensitivity MR analyses. The variance in the exposures explained by the sets of SNPs used as MR instruments ranged from 8.1 × 10-4 to 0.31. Our MR study was well-powered to detect effects as small as an odds ratio (OR) of 1.045 for ALS in the main MR and as small as an OR of 1.32 in the reverse MR. CONCLUSION: Our MR study does not support a relationship between liability to autoimmune disorders and ALS risk in the European population. The associations observed in epidemiological studies could be partly attributed to shared biology or environmental confounders.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Autoimunes , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
4.
Int J Neurosci ; 132(6): 558-562, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32962506

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is a rare autosomal recessive, multisystemic disease. Patients with the A-T syndrome present a broad spectrum of disease phenotypes. The ATM (ataxia telangiectasia mutated) gene, the only causative gene for A-T. METHOD: A patient of Persian origin presenting with typical A-T was referred to our genetics centre for specialized genetic counselling and testing. Targeted next-generation sequencing (NGS) was applied. Sanger sequencing was used to confirm the candidate variant. Modelling was performed using the SWISS-MODEL server. RESULTS: A homozygous stop-gain variant c.829G > T (p.E277*) was found in the ATM gene. This variant was confirmed by Sanger sequencing and modelling of native structure, and truncated structure was performed. CONCLUSION: To date, very few pathogenic variants of the ATM gene have been reported from the Iranian population. The finding has implications in molecular diagnostic for A-T in Iran.


Assuntos
Ataxia Telangiectasia , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Irã (Geográfico) , Mutação/genética , Fenótipo
5.
Int J Audiol ; 58(10): 628-634, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187663

RESUMO

Objective: Hearing loss (HL) is a common sensory deficit with high phenotypic and genotypic heterogeneity. A large Iranian family with HL was genetically assessed in this study. Design: A proband from a consanguineous multiplex HL family from Iran was examined via Targeted Next-Generation Sequencing (TNGS). Sanger sequencing allowed the segregation analysis of the variant of interest and the investigation of its presence in a cohort of 50 ethnicity-matched healthy control individuals. The gene was previously associated with HL. Therefore, to determine whether the variant was specifically associated with Pendred Syndrome (PDS) or DFNB4, biochemical analyses, PTA, thyroid scans by Tc99m, perchlorate discharge test and high-resolution CT scan of the temporal bone were carried out on the affected family members. Study sample: Ten members of a large multiplex Iranian family with HL were recruited in this study. In addition, 50 unrelated healthy controls of the same ethnic group were randomly selected to genotype the variant. Results: A homozygous missense variant (NM_000441.1: c.1211C > T/p.Thr404Ile) in exon 10 was found segregating in the family. Based on the ACMG's guidelines, the variant was classified as pathogenic. Conclusion: This study expands the spectrum of SLC26A4 pathogenic variants in hearing loss.


Assuntos
Bócio Nodular/genética , Perda Auditiva Neurossensorial/genética , Transportadores de Sulfato/genética , Estudos de Casos e Controles , Feminino , Humanos , Irã (Geográfico) , Masculino , Mutação de Sentido Incorreto
6.
Front Psychiatry ; 15: 1369767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751416

RESUMO

Introduction: Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer susceptibility for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD susceptibility, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. Methods: In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Results: Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that susceptibility for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Discussion: Our findings suggest that cognitive ability itself may not be the factor driving the underlying liability for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

7.
medRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076919

RESUMO

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

8.
J Neurol Sci ; 379: 212-216, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716242

RESUMO

Ataxia telangiectasia (A-T) is a neurodegenerative autosomal recessive disorder with the main characteristics of progressive cerebellar degeneration, sensitivity to ionizing radiation, immunodeficiency, telangiectasia, premature aging, recurrent sinopulmonary infections, and increased risk of malignancy, especially of lymphoid origin. Ataxia Telangiectasia Mutated gene, ATM, as a causative gene for the A-T disorder, encodes the ATM protein, which plays an important role in the activation of cell-cycle checkpoints and initiation of DNA repair in response to DNA damage. Targeted next-generation sequencing (NGS) was performed on an Iranian 5-year-old boy presented with truncal and limb ataxia, telangiectasia of the eye, Hodgkin lymphoma, hyper pigmentation, total alopecia, hepatomegaly, and dysarthria. Sanger sequencing was used to confirm the candidate pathogenic variants. Computational docking was done using the HEX software to examine how this change affects the interactions of ATM with the upstream and downstream proteins. Three different variants were identified comprising two homozygous SNPs and one novel homozygous frameshift variant (c.80468047delTA, p.Thr2682ThrfsX5), which creates a stop codon in exon 57 leaving the protein truncated at its C-terminal portion. Therefore, the activation and phosphorylation of target proteins are lost. Moreover, the HEX software confirmed that the mutated protein lost its interaction with upstream and downstream proteins. The variant was classified as pathogenic based on the American College of Medical Genetics and Genomics guideline. This study expands the spectrum of ATM pathogenic variants in Iran and demonstrates the utility of targeted NGS in genetic diagnostics.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Ataxia Telangiectasia/genética , Simulação por Computador , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Pré-Escolar , Mutação da Fase de Leitura/genética , Humanos , Irã (Geográfico) , Masculino , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA