RESUMO
Leucine-rich repeat (LRR) proteins are commonly involved in innate immunity of animals and plants, including for pattern recognition of pathogen-derived elicitors. The Anopheles secreted LRR proteins APL1C and LRIM1 are required for malaria ookinete killing in conjunction with the complement-like TEP1 protein. However, the mechanism of parasite immune recognition by the mosquito remains unclear, although it is known that TEP1 lacks inherent binding specificity. Here, we find that APL1C and LRIM1 bind specifically to Plasmodium berghei ookinetes, even after depletion of TEP1 transcript and protein, consistent with a role for the LRR proteins in pathogen recognition. Moreover, APL1C does not bind to ookinetes of the human malaria parasite Plasmodium falciparum, and is not required for killing of this parasite, which correlates LRR binding specificity and immune protection. Most of the live P. berghei ookinetes that migrated into the extracellular space exposed to mosquito hemolymph, and almost all dead ookinetes, are bound by APL1C, thus associating LRR protein binding with parasite killing. We also find that APL1C binds to the surface of P. berghei sporozoites released from oocysts into the mosquito hemocoel and forms a potent barrier limiting salivary gland invasion and mosquito infectivity. Pathogen binding by APL1C provides the first functional explanation for the long-known requirement of APL1C for P. berghei ookinete killing in the mosquito midgut. We propose that secreted mosquito LRR proteins are required for pathogen discrimination and orientation of immune effector activity, potentially as functional counterparts of the immunoglobulin-based receptors used by vertebrates for antigen recognition.
Assuntos
Anopheles , Malária , Animais , Humanos , Proteínas de Repetições Ricas em Leucina , Anopheles/parasitologia , Esporozoítos/metabolismo , Proteínas/metabolismo , Plasmodium berghei/metabolismoRESUMO
Membranolytic molecules constitute the first line of innate immune defense against pathogenic microorganisms. Plasmodium sporozoites are potentially exposed to these cytotoxic molecules in the hemolymph and salivary glands of mosquitoes, as well as in the skin, blood, and liver of the mammalian host. Here, we show that sporozoites are resistant to bacteriolytic concentration of cecropin B, a cationic amphipathic antimicrobial insect peptide. Intriguingly, anti-tumoral cell-penetrating peptides derived from the anti-apoptotic protein AAC11 killed P. berghei and P. falciparum sporozoites. Using dynamic imaging, we demonstrated that the most cytotoxic peptide, called RT39, did not significantly inhibit the sporozoite motility until the occurrence of a fast permeabilization of the parasite membrane by the peptide. Concomitantly, the cytosolic fluorescent protein constitutively expressed by sporozoites leaked from the treated parasite body while To-Pro 3 and FITC-labeled RT39 internalized, respectively, binding to the nucleic acids and membranes of sporozoites. This led to an increase in the parasite granularity as assessed by flow cytometry. Most permeabilization events started at the parasite's posterior end, resulting in the appearance of a fluorescent dot in the anterior part of sporozoites. Understanding and exploiting the susceptibility of sporozoites and other plasmodial stages to membranolytic molecules might foster strategies to eliminate the parasite and block its transmission.
RESUMO
Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Proteínas de Protozoários , Imunoglobulinas , EsporozoítosRESUMO
Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.
Assuntos
Anticorpos Monoclonais , Plasmodium falciparum , Animais , Anticorpos Antiprotozoários , Proteínas de Transporte , Eritrócitos , HumanosRESUMO
Plasmodium vivax is the most common species of human malaria parasite found outside Africa, with high endemicity in Asia, Central and South America, and Oceania. Although Plasmodium falciparum causes the majority of deaths, P. vivax can lead to severe malaria and result in significant morbidity and mortality. The development of a protective vaccine will be a major step toward malaria elimination. Recently, a formulation containing the three allelic variants of the P. vivax circumsporozoite protein (PvCSP-All epitopes) showed partial protection in mice after a challenge with the hybrid Plasmodium berghei (Pb) sporozoite, in which the PbCSP central repeats were replaced by the VK210 PvCSP repeats (Pb/Pv sporozoite). In the present study, the chimeric PvCSP allelic variants (VK210, VK247, and P. vivax-like) were fused with the mumps virus nucleocapsid protein in the absence (NLP-CSPR) or presence of the conserved C-terminal (CT) domain of PvCSP (NLP-CSPCT). To elicit stronger humoral and cellular responses, Pichia pastoris yeast was used to assemble them as nucleocapsid-like particles (NLPs). Mice were immunized with each recombinant protein adjuvanted with Poly (I:C) and presented a high frequency of antigen-specific antibody-secreting cells (ASCs) on days 5 and 30, respectively, in the spleen and bone marrow. Moreover, high IgG titers against all PvCSP variants were detected in the sera. Later, these immunized mice with NLP-CSPCT were challenged with Pb/Pv sporozoites. Sterile protection was observed in 30% of the challenged mice. Therefore, this vaccine formulation use has the potential to be a good candidate for the development of a universal vaccine against P. vivax malaria.
RESUMO
Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.
RESUMO
Following the RTS,S malaria vaccine, which showed only partial protection with short-term memory, there is strong support to develop second-generation malaria vaccines that yield higher efficacy with longer duration. The use of replicating viral vectors to deliver subunit vaccines is of great interest due to their capacity to induce efficient cellular immune responses and long-term memory. The measles vaccine virus offers an efficient and safe live viral vector that could easily be implemented in the field. Here, we produced recombinant measles viruses (rMV) expressing malaria "gold standard" circumsporozoïte antigen (CS) of Plasmodium berghei (Pb) and Plasmodium falciparum (Pf) to test proof of concept of this delivery strategy. Immunization with rMV expressing PbCS or PfCS induced high antibody responses in mice that did not decrease for at least 22 weeks post-prime, as well as rapid development of cellular immune responses. The observed long-term memory response is key for development of second-generation malaria vaccines. Sterile protection was achieved in 33% of immunized mice, as usually observed with the CS antigen, and all other immunized animals were clinically protected from severe and lethal Pb ANKA-induced cerebral malaria. Further rMV-vectored malaria vaccine candidates expressing additional pre-erythrocytic and blood-stage antigens in combination with rMV expressing PfCS may provide a path to development of next generation malaria vaccines with higher efficacy.
RESUMO
The use of antibody-based therapy to treat a variety of diseases and conditions is well documented. The use of antibodies as an antidote to treat tetanus infections was one of the first examples of immunotherapy and remains the standard of care for cases involving potential infections. Plasma-derived immunoglobulins obtained from human or horse pose risks of infection from undetectable emergent viruses or may cause anaphylaxis. Further, there is a lack of consistency between lots. In the search for new formulations, we obtained a series of clonally related human monoclonal antibodies (mAbs) derived from B cells sorted from donors that presented anti-tetanus neutralizing titers. Donors were revaccinated prior to blood collection. Different strategies were used for single-cell sorting, since it was challenging to identify cells at a very low frequency: memory B cell sorting using fluorescent-labeled tetanus toxoid and toxin as baits, and plasmablast sorting done shortly after revaccination. Screening of the recombinant mAbs with the whole tetanus toxin allowed us to select candidates with therapeutic potential, since mAbs to different domains can contribute additively to the neutralizing effect. Because of selective binding to different domains, we tested mAbs individually, or in mixtures of two or three, in the neutralizing in vivo assay specified by Pharmacopeia for the determination of polyclonal hyperimmune sera potency. An oligoclonal mixture of three human mAbs completely neutralized the toxin injected in the animals, signaling an important step for clinical mAb development.
RESUMO
The circumsporozoite protein (CSP) is the major surface protein of malaria sporozoites (SPZs), the motile and invasive parasite stage inoculated in the host skin by infected mosquitoes. Antibodies against the central CSP repeats of different plasmodial species are known to block SPZ infectivity1-5, but the precise mechanism by which these effectors operate is not completely understood. Here, using a rodent Plasmodium yoelii malaria model, we show that sterile protection mediated by anti-P. yoelii CSP humoral immunity depends on the parasite inoculation into the host skin, where antibodies inhibit motility and kill P. yoelii SPZs via a characteristic 'dotty death' phenotype. Passive transfer of an anti-repeat monoclonal antibody (mAb) recapitulates the skin inoculation-dependent protection, in a complement- and Fc receptor γ-independent manner. This purified mAb also decreases motility and, notably, induces the dotty death of P. yoelii SPZs in vitro. Cytotoxicity is species-transcendent since cognate anti-CSP repeat mAbs also kill Plasmodium berghei and Plasmodium falciparum SPZs. mAb cytotoxicity requires the actomyosin motor-dependent translocation and stripping of the protective CSP surface coat, rendering the parasite membrane susceptible to the SPZ pore-forming-like protein secreted to wound and traverse the host cell membrane6. The loss of SPZ fitness caused by anti-P. yoelii CSP repeat antibodies is thus a dynamic process initiated in the host skin where SPZs either stop moving7, or migrate and traverse cells to progress through the host tissues7-9 at the eventual expense of their own life.
Assuntos
Anticorpos Antiprotozoários/farmacologia , Malária/imunologia , Plasmodium yoelii/imunologia , Proteínas de Protozoários/imunologia , Pele/parasitologia , Animais , Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Culicidae , Feminino , Camundongos , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Plasmodium yoelii/citologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esporozoítos/citologia , Esporozoítos/imunologiaRESUMO
Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet oxygen (1O2) generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-oxidation and necro-apoptotic cell death. UVA (355 nm) and visible (532 nm) light photosensitize 1O2 with similar yields, and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg- and Endo III-sensitive modifications); these DNA lesions may be mutagenic and may cause photoaging, as well as other health problems, such as skin cancer.