Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Health Sci (Qassim) ; 18(4): 70-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974650

RESUMO

Chromosomal structural variations (SVs) are linked to a wide range of phenotypes and arise due to disruptions during DNA replication, which can affect gene function within the SV regions. This case report details a patient diagnosed with neurodevelopmental delay. Detailed investigation through array comparative genomic hybridization revealed two pathogenic SVs on chromosome 1, which align with a 1p36 microdeletion, and a microduplication at 2p35.3, the latter being classified as a variant of unknown significance. The patient's clinical presentation is consistent with the 1p36 deletion syndrome, characterized by specific developmental delays and physical anomalies. Further genetic analysis suggests that these terminal rearrangements might stem from an unbalanced translocation between the short arms of chromosomes 1 and 2. This case underscores the complexity of interpreting multiple concurrent SVs and their cumulative effect on phenotype. Ongoing research into such chromosomal abnormalities will enhance our understanding of their clinical manifestations and guide more targeted therapeutic strategies.

2.
Sci Rep ; 9(1): 11440, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391571

RESUMO

Lysenin is a pore-forming toxin, which self-inserts open channels into sphingomyelin containing membranes and is known to be voltage regulated. The mechanistic details of its voltage gating mechanism, however, remains elusive despite much recent efforts. Here, we have employed a novel combination of experimental and computational techniques to examine a model for voltage gating, that is based on the existence of an "effective electric dipole" inspired by recent reported structures of lysenin. We support this mechanism by the observations that (i) the charge-reversal and neutralization substitutions in lysenin result in changing its electrical gating properties by modifying the strength of the dipole, and (ii) an increase in the viscosity of the solvent increases the drag force and slows down the gating. In addition, our molecular dynamics (MD) simulations of membrane-embedded lysenin provide a mechanistic picture for lysenin conformational changes, which reveals, for the first time, the existence of a lipid-dependent bulge region in the pore-forming module of lysenin, which may explain the gating mechanism of lysenin at a molecular level.


Assuntos
Ativação do Canal Iônico/fisiologia , Metabolismo dos Lipídeos , Simulação de Dinâmica Molecular , Domínios Proteicos/fisiologia , Toxinas Biológicas/metabolismo , Colesterol/metabolismo , Lipídeos , Mutação , Fosfatidilcolinas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/metabolismo , Toxinas Biológicas/genética
3.
Cell Biosci ; 4(1): 12, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24594290

RESUMO

Diabetes is characterized by high blood glucose level due to either autoimmune destruction of islet ß-cells or insufficient insulin secretion or glucose non-responsive production of insulin by ß-cells. It is highly desired to replace biological functional ß-cells for the treatment of diabetes. Unfortunately, ß-cells proliferate with an extremely low rate. This cellular property hinders cell-based therapy for clinical application. Many attempts have been made to develop techniques that allow production of large quantities of clinically relevant islet ß-cells in vitro. A line of studies evidently demonstrate that ß-cells can proliferate under certain circumstances, giving the hopes for generating and expanding these cells in vitro and transplanting them to the recipient. In this review, we discuss the requirements of microenvironmental stimuli that stimulate ß-cell proliferation in cell cultures. We highlight advanced approaches for augmentation of ß-cell expansion that have recently emerged in this field. Furthermore, knowing the signaling pathways and molecular mechanisms would enable manipulating cell proliferation and optimizing its insulin secretory function. Thus, signaling pathways involved in the enhancement of cell proliferation are discussed as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA