Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cureus ; 16(6): e61632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966445

RESUMO

INTRODUCTION: In the past, fertility concerns have predominantly revolved around the effect of a woman's age on the quality of her eggs and the success of her pregnancy. While men generally retain their ability to father children throughout their lives, there is evidence suggesting a decline in natural conception rates as paternal age increases. A growing body of research indicates a potential link between advanced paternal age (APA) and various adverse outcomes, including changes in sperm genetics, reduced conception rates, higher rates of miscarriage, lower live birth rates, and even long-term health consequences in offspring. However, it remains unclear whether there is an association between APA and the effectiveness of assisted reproductive technology (ART). This study aims to shed light on the relationship between APA and semen parameters. METHODOLOGY: This is a retrospective, descriptive study analyzing data from electronic medical records of men undergoing ART at a fertility clinic in Saudia Arabia (2017-2022). Men aged 21-60 with at least one semen analysis and no missing data/hormonal treatment were included. Data on age and semen parameters (count, motility, and morphology) were extracted and analyzed using Jeffreys's Amazing Statistics Program (JASP; University of Amsterdam, Amsterdam, Netherlands) (descriptive statistics, Spearman's rank correlation). RESULTS: Analysis of 1506 men undergoing ART revealed a mean age of 37 years (SD=6.94) and a mean sperm count of 55.0 million/mL (SD=46.05). The correlation between age and sperm count indicates a minimal association (r=0.075, p<0.01); moderate positive correlations were observed between sperm count and motility (r=0.406); count and morphology (r=0.543); and motility and morphology (r=0.458). CONCLUSION: Age may not be a major factor in overall sperm parameters for this population, but a strong positive correlation was observed between sperm count, motility, and normal morphology. These findings suggest that these semen parameters are interconnected, with higher sperm counts potentially indicating better overall sperm quality.

2.
Placenta ; 103: 124-133, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120048

RESUMO

INTRODUCTION: Paternal low-protein diet can alter sperm methylation status, fetal growth and program offspring ill-health, however its impact on the placenta remains poorly defined. Here we examine the influence paternal low-protein diet has on fetal and placental development and the additional impact of supplementary methyl-donors on fetoplacental physiology. METHODS: Male C57BL/6J mice were fed a control normal protein diet (NPD; 18% protein), a low-protein diet (LPD; 9% protein) or LPD with methyl-donor supplementation (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12) for a minimum of 8 weeks. Males were mated with 8-11 week old female C57BL/6J mice and fetal and placental tissue collected on embryonic day 17.5. RESULTS: Paternal LPD was associated with increased fetal weights compared to NPD and MD-LPD with 22% fetuses being above the 90th centile for fetal weight. However, LPD and MD-LPD placental weights were reduced when compared to NPD. Placentas from LPD fathers demonstrated a reduced junctional zone area and reduced free-fatty acid content. MD-LPD placentas did not mirror these finding, demonstrating an increased chorion area, a reduction in junctional-specific glycogen staining and reduced placental Dnmt3bexpression, none of which were apparent in either NPD or LPD placentas. DISCUSSION: A sub-optimal paternal diet can influence fetal growth and placental development, and dietary methyl-donor supplementation alters placental morphology and gene expression differentially to that observed with LPD alone. Understanding how paternal diet and micro-nutrient supplementation influence placental development is crucial for determining connections between paternal well-being and future offspring health.


Assuntos
Dieta com Restrição de Proteínas , Desenvolvimento Fetal , Exposição Paterna , Placentação , Animais , Dieta com Restrição de Proteínas/efeitos adversos , Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Pai , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Metano/análogos & derivados , Metano/metabolismo , Metano/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Placenta/efeitos dos fármacos , Placenta/metabolismo , Placentação/efeitos dos fármacos , Gravidez , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA