Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chaos ; 34(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39288776

RESUMO

The emergence of multi-disease epidemics presents an escalating threat to global health. In response to this serious challenge, we present an innovative stochastic susceptible-vaccinated-infected-recovered epidemic model that addresses the dynamics of two diseases alongside intricate vaccination strategies. Our novel model undergoes a comprehensive exploration through both theoretical and numerical analyses. The stopping time concept, along with appropriate Lyapunov functions, allows us to explore the possibility of a globally positive solution. Through the derivation of reproduction numbers associated with the stochastic model, we establish criteria for the potential extinction of the diseases. The conditions under which one or both diseases may persist are explained. In the numerical aspect, we derive a computational scheme based on the Milstein method. The scheme will not only substantiate the theoretical results but also facilitate the examination of the impact of parameters on disease dynamics. Through examples and simulations, we have a crucial impact of varying parameters on the system's behavior.


Assuntos
Epidemias , Humanos , Processos Estocásticos , Simulação por Computador , Número Básico de Reprodução , Modelos Biológicos , Vacinação , Modelos Epidemiológicos
2.
Vaccines (Basel) ; 10(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36298547

RESUMO

In this paper, an SVIR epidemic model with temporary immunities and general incidence rates is constructed and analyzed. By utilizing Lyapunov functions, we prove the existence and uniqueness of the positive global solution of the constructed model, as well as the sufficient conditions of extinction and persistence of disease, are provided. Due to the difficulty of obtaining the analytical solution to our model, we construct two numerical schemes to generate an approximate solution to the model. The first one is called the split-step θ-Milstein (SSTM) method, and the second one is called the stochastic split-step θ-nonstandard finite difference (SSSNSFD) method, which is designed by merging split-step θ method with stochastic nonstandard finite difference method for the first time in this paper. Further, we prove the positivity, boundedness, and stability of the SSSTNSFD method. By employing the two mentioned methods, we support the validity of the studied theoretical results, as well, the effect of the length of immunity periods, parameters values of the incidence rates, and noise on the dynamics of the model are discussed and simulated. The increase in the size of time step size plays a vital role in revealing the method that preserves positivity, boundedness, and stability. To this end, a comparison between the proposed numerical methods is carried out graphically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA