Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1463-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897469

RESUMO

Reported here are measurements of the penetration depth and spatial distribution of photoelectron (PE) damage excited by 18.6 keV X-ray photons in a lysozyme crystal with a vertical submicrometre line-focus beam of 0.7 µm full-width half-maximum (FWHM). The experimental results determined that the penetration depth of PEs is 5 ± 0.5 µm with a monotonically decreasing spatial distribution shape, resulting in mitigation of diffraction signal damage. This does not agree with previous theoretical predication that the mitigation of damage requires a peak of damage outside the focus. A new improved calculation provides some qualitative agreement with the experimental results, but significant errors still remain. The mitigation of radiation damage by line focusing was measured experimentally by comparing the damage in the X-ray-irradiated regions of the submicrometre focus with the large-beam case under conditions of equal exposure and equal volumes of the protein crystal, and a mitigation factor of 4.4 ± 0.4 was determined. The mitigation of radiation damage is caused by spatial separation of the dominant PE radiation-damage component from the crystal region of the line-focus beam that contributes the diffraction signal. The diffraction signal is generated by coherent scattering of incident X-rays (which introduces no damage), while the overwhelming proportion of damage is caused by PE emission as X-ray photons are absorbed.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Modelos Moleculares , Muramidase/química , Fótons , Conformação Proteica , Raios X
2.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 12): 1287-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21123868

RESUMO

Recently, strategies to reduce primary radiation damage have been proposed which depend on focusing X-rays to dimensions smaller than the penetration depth of excited photoelectrons. For a line focus as used here the penetration depth is the maximum distance from the irradiated region along the X-ray polarization direction that the photoelectrons penetrate. Reported here are measurements of the penetration depth and distribution of photoelectron damage excited by 18.6 keV photons in a lysozyme crystal. The experimental results showed that the penetration depth of ~17.35 keV photoelectrons is 1.5 ± 0.2 µm, which is well below previous theoretical estimates of 2.8 µm. Such a small penetration depth raises challenging technical issues in mitigating damage by line-focus mini-beams. The optimum requirements to reduce damage in large crystals by a factor of 2.0-2.5 are Gaussian line-focus mini-beams with a root-mean-square width of 0.2 µm and a distance between lines of 2.0 µm. The use of higher energy X-rays (> 26 keV) would help to alleviate some of these requirements by more than doubling the penetration depth. It was found that the X-ray dose has a significant contribution from the crystal's solvent, which initially contained 9.0%(w/v) NaCl. The 15.8 keV photoelectrons of the Cl atoms and their accompanying 2.8 keV local dose from the decay of the resulting excited atoms more than doubles the dose deposited in the X-ray-irradiated region because of the much greater cross-section and higher energy of the excited atom, degrading the mitigation of radiation damage from 2.5 to 2.0. Eliminating heavier atoms from the solvent and data collection far from heavy-atom absorption edges will significantly improve the mitigation of damage by line-focus mini-beams.


Assuntos
Cristalografia por Raios X/métodos , Fótons , Doses de Radiação
3.
J Appl Crystallogr ; 49(Pt 2): 415-425, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27047303

RESUMO

At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry.

4.
J Synchrotron Radiat ; 13(Pt 5): 408-10, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16924138

RESUMO

In order to accurately monitor shutter timing events and long-term shutter performance, a timing-shutter monitor has been developed. This monitor uses a photodiode to capture X-ray-induced fluorescence from the shutter blade in synchrony with goniometer rotation to measure shutter opening and closing delay times, as well as the total time that X-rays are exposed to the sample during crystallographic data frames.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Proteínas/química , Síncrotrons , Desenho de Equipamento , Software , Fatores de Tempo , Raios X
5.
J Synchrotron Radiat ; 7(Pt 2): 61-8, 2000 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16609175

RESUMO

The Structural Biology Center beamline, 19ID, has been designed to take full advantage of the highly intense undulator radiation and very low source emittance available at the Advanced Photon Source. In order to keep the X-ray beam focused onto the pre-sample slits, a novel position-sensitive PIN diode array has been developed. The array consists of four PIN diodes positioned upstream of a 0.5 microm-thick metal foil placed in the X-ray beam. Using conventional difference-over-the-sum techniques, two-dimensional position information is obtained from the metal foil fluorescence. Because the full X-ray beam passes through the metal foil, the true beam center-of-mass is measured. The device is compact, inexpensive to construct, operates in a vacuum and has a working range of 8 mm x 10 mm that can be expanded with design modifications. Measured position sensitivity is 1-2 microm. Although optimized for use in the 5-25 keV energy range, the upper limit can be extended by changing metals or adjusting foil thickness.

6.
Mol Microbiol ; 39(3): 567-80, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11169099

RESUMO

FlhD is a 13.3 kDa transcriptional activator protein of flagellar genes and a global regulator. FlhD activates the transcription of class II operons in the flagellar regulon when complexed with a second protein FlhC (21.5 kDa). FlhD also regulates other expression systems in Escherichia coli. We are seeking to understand this plasticity of FlhD's DNA-binding specificity and, to this end, we have determined the crystal structure of the isolated FlhD protein. The structure was solved by substituting seleno-methionine for natural sulphur-methionine in FlhD, crystallizing the protein and determining the structure factor phases by the method of multiple-energy anomalous dispersion (MAD). The FlhD protein is dimeric. The dimer is tightly coupled, with an intimate contact surface, implying that the dimer does not easily dissociate. The FlhD monomer is predominantly alpha-helical. The C-termini of both FlhD monomers (residues 83-116) are completely disrupted by crystal packing, implying that this region of FlhD is highly flexible. However, part of the C-terminus structure in chain A (residues 83-98) was modelled using a native FlhD crystal. What is seen in chain A suggests a classic DNA-binding, helix-turn-helix (HTH) motif. FlhD does not bind DNA by itself, so it may be that the DNA-binding HTH motif becomes rigidly defined only when FlhD forms a complex with some other protein, such as FlhC. If this were true, it might explain how FlhD exhibits plasticity in its DNA-binding specificity, as each partner protein with which it forms a complex could allosterically affect the binding specificity of its HTH motif. A disulphide bridge is seen between the unique cysteine residues (Cys-65) of FlhD native homodimers. Alanine substitution at Cys-65 does not affect FlhD transcription activator activity, suggesting that the disulphide bond is not necessary for either dimer stability or this function of FlhD. Electrostatic potential analysis indicates that dimeric FlhD has a negatively charged surface.


Assuntos
Proteínas de Ligação a DNA/química , Escherichia coli/metabolismo , Transativadores/química , Cristalização , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Dissulfetos/química , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli , Sequências Hélice-Volta-Hélice , Modelos Moleculares , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Conformação Proteica , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA