Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Metab ; 6(6): 548-559, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28580285

RESUMO

OBJECTIVE: Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectively. We previously found that EP3 and EP4 expression are reciprocally regulated by activation of the FoxM1 transcription factor, which promotes ß-cell proliferation and survival. Our goal was to determine if EP3 and EP4 regulate ß-cell proliferation and survival and, if so, to elucidate the downstream signaling mechanisms. METHODS: ß-cell proliferation was assessed in mouse and human islets ex vivo treated with selective agonists and antagonists for EP3 (sulprostone and DG-041, respectively) and EP4 (CAY10598 and L-161,982, respectively). ß-cell survival was measured in mouse and human islets treated with the EP3- and EP4-selective ligands in conjunction with a cytokine cocktail to induce cell death. Changes in gene expression and protein phosphorylation were analyzed in response to modulation of EP3 and EP4 activity in mouse islets. RESULTS: Blockade of EP3 enhanced ß-cell proliferation in young, but not old, mouse islets in part through phospholipase C (PLC)-γ1 activity. Blocking EP3 also increased human ß-cell proliferation. EP4 modulation had no effect on ex vivo proliferation alone. However, blockade of EP3 in combination with activation of EP4 enhanced human, but not mouse, ß-cell proliferation. In both mouse and human islets, EP3 blockade or EP4 activation enhanced ß-cell survival in the presence of cytokines. EP4 acts in a protein kinase A (PKA)-dependent manner to increase mouse ß-cell survival. In addition, the positive effects of FoxM1 activation on ß-cell survival are inhibited by EP3 and dependent on EP4 signaling. CONCLUSIONS: Our results identify EP3 and EP4 as novel regulators of ß-cell proliferation and survival in mouse and human islets ex vivo.


Assuntos
Proliferação de Células , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP3/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Acrilamidas/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Receptores de Prostaglandina E Subtipo EP3/agonistas , Receptores de Prostaglandina E Subtipo EP4/agonistas , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA