Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 19(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817471

RESUMO

To build, run, and maintain reliable manufacturing machines, the condition of their components has to be continuously monitored. When following a fine-grained monitoring of these machines, challenges emerge pertaining to the (1) feeding procedure of large amounts of sensor data to downstream processing components and the (2) meaningful analysis of the produced data. Regarding the latter aspect, manifold purposes are addressed by practitioners and researchers. Two analyses of real-world datasets that were generated in production settings are discussed in this paper. More specifically, the analyses had the goals (1) to detect sensor data anomalies for further analyses of a pharma packaging scenario and (2) to predict unfavorable temperature values of a 3D printing machine environment. Based on the results of the analyses, it will be shown that a proper management of machines and their components in industrial manufacturing environments can be efficiently supported by the detection of anomalies. The latter shall help to support the technical evangelists of the production companies more properly.

2.
Commun Med (Lond) ; 4(1): 76, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649784

RESUMO

BACKGROUND: Machine learning (ML) models are evaluated in a test set to estimate model performance after deployment. The design of the test set is therefore of importance because if the data distribution after deployment differs too much, the model performance decreases. At the same time, the data often contains undetected groups. For example, multiple assessments from one user may constitute a group, which is usually the case in mHealth scenarios. METHODS: In this work, we evaluate a model's performance using several cross-validation train-test-split approaches, in some cases deliberately ignoring the groups. By sorting the groups (in our case: Users) by time, we additionally simulate a concept drift scenario for better external validity. For this evaluation, we use 7 longitudinal mHealth datasets, all containing Ecological Momentary Assessments (EMA). Further, we compared the model performance with baseline heuristics, questioning the essential utility of a complex ML model. RESULTS: Hidden groups in the dataset leads to overestimation of ML performance after deployment. For prediction, a user's last completed questionnaire is a reasonable heuristic for the next response, and potentially outperforms a complex ML model. Because we included 7 studies, low variance appears to be a more fundamental phenomenon of mHealth datasets. CONCLUSIONS: The way mHealth-based data are generated by EMA leads to questions of user and assessment level and appropriate validation of ML models. Our analysis shows that further research needs to follow to obtain robust ML models. In addition, simple heuristics can be considered as an alternative for ML. Domain experts should be consulted to find potentially hidden groups in the data.


Computational approaches can be used to analyse health-related data collected using mobile applications from thousands of participants. We tested the impact of some participants being represented multiple times or some not being counted properly within the analysis. In this context, we label a multi-represented participant a group. We find that ignoring such groups can lead to false estimation of health-related predictions. In some cases, simpler quantitative methods can outperform complex computational models. This highlights the importance of monitoring and validating results conducted by complex computational models and confers the use of simpler analytical methods in its place.

3.
Artif Intell Med ; 143: 102616, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37673561

RESUMO

BACKGROUND: Medical use cases for machine learning (ML) are growing exponentially. The first hospitals are already using ML systems as decision support systems in their daily routine. At the same time, most ML systems are still opaque and it is not clear how these systems arrive at their predictions. METHODS: In this paper, we provide a brief overview of the taxonomy of explainability methods and review popular methods. In addition, we conduct a systematic literature search on PubMed to investigate which explainable artificial intelligence (XAI) methods are used in 450 specific medical supervised ML use cases, how the use of XAI methods has emerged recently, and how the precision of describing ML pipelines has evolved over the past 20 years. RESULTS: A large fraction of publications with ML use cases do not use XAI methods at all to explain ML predictions. However, when XAI methods are used, open-source and model-agnostic explanation methods are more commonly used, with SHapley Additive exPlanations (SHAP) and Gradient Class Activation Mapping (Grad-CAM) for tabular and image data leading the way. ML pipelines have been described in increasing detail and uniformity in recent years. However, the willingness to share data and code has stagnated at about one-quarter. CONCLUSIONS: XAI methods are mainly used when their application requires little effort. The homogenization of reports in ML use cases facilitates the comparability of work and should be advanced in the coming years. Experts who can mediate between the worlds of informatics and medicine will become more and more in demand when using ML systems due to the high complexity of the domain.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Hospitais , Aprendizado de Máquina Supervisionado , Atenção à Saúde
4.
Sci Rep ; 13(1): 8989, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268689

RESUMO

Mobile applications have gained popularity in healthcare in recent years. These applications are an increasingly important pillar of public health care, as they open up new possibilities for data collection and can lead to new insights into various diseases and disorders thanks to modern data analysis approaches. In this context, Ecological Momentary Assessment (EMA) is a commonly used research method that aims to assess phenomena with a focus on ecological validity and to help both the user and the researcher observe these phenomena over time. One phenomenon that benefits from this capability is the chronic condition tinnitus. TrackYourTinnitus (TYT) is an EMA-based mobile crowdsensing platform designed to provide more insight into tinnitus by repeatedly assessing various dimensions of tinnitus, including perception (i.e., perceived presence). Because the presence of tinnitus is the dimension that is of great importance to chronic tinnitus patients and changes over time in many tinnitus patients, we seek to predict the presence of tinnitus based on the not directly related dimensions of mood, stress level, arousal, and concentration level that are captured in TYT. In this work, we analyzed a dataset of 45,935 responses to a harmonized EMA questionnaire using different machine learning techniques. In addition, we considered five different subgroups after consultation with clinicians to further validate our results. Finally, we were able to predict the presence of tinnitus with an accuracy of up to 78% and an AUC of up to 85.7%.


Assuntos
Aplicativos Móveis , Zumbido , Humanos , Avaliação Momentânea Ecológica , Zumbido/diagnóstico , Inquéritos e Questionários , Afeto
5.
IEEE J Biomed Health Inform ; 27(6): 2794-2805, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023154

RESUMO

At the beginning of the COVID-19 pandemic, with a lack of knowledge about the novel virus and a lack of widely available tests, getting first feedback about being infected was not easy. To support all citizens in this respect, we developed the mobile health app Corona Check. Based on a self-reported questionnaire about symptoms and contact history, users get first feedback about a possible corona infection and advice on what to do. We developed Corona Check based on our existing software framework and released the app on Google Play and the Apple App Store on April 4, 2020. Until October 30, 2021, we collected 51,323 assessments from 35,118 users with explicit agreement of the users that their anonymized data may be used for research purposes. For 70.6% of the assessments, the users additionally shared their coarse geolocation with us. To the best of our knowledge, we are the first to report about such a large-scale study in this context of COVID-19 mHealth systems. Although users from some countries reported more symptoms on average than users from other countries, we did not find any statistically significant differences between symptom distributions (regarding country, age, and sex). Overall, the Corona Check app provided easily accessible information on corona symptoms and showed the potential to help overburdened corona telephone hotlines, especially during the beginning of the pandemic. Corona Check thus was able to support fighting the spread of the novel coronavirus. mHealth apps further prove to be valuable tools for longitudinal health data collection.


Assuntos
COVID-19 , Aplicativos Móveis , Telemedicina , Humanos , Pandemias , Autoavaliação (Psicologia) , Inquéritos e Questionários
6.
J Clin Med ; 11(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893370

RESUMO

Tinnitus is an auditory phantom perception without external sound stimuli. This chronic perception can severely affect quality of life. Because tinnitus symptoms are highly heterogeneous, multimodal data analyses are increasingly used to gain new insights. MHealth data sources, with their particular focus on country- and season-specific differences, can provide a promising avenue for new insights. Therefore, we examined data from the TrackYourTinnitus (TYT) mHealth platform to create symptom profiles of TYT users. We used gradient boosting engines to classify momentary tinnitus and regress tinnitus loudness, using country of origin and season as features. At the daily assessment level, tinnitus loudness can be regressed with a mean absolute error rate of 7.9% points. In turn, momentary tinnitus can be classified with an F1 score of 93.79%. Both results indicate differences in the tinnitus of TYT users with respect to season and country of origin. The significance of the features was evaluated using statistical and explainable machine learning methods. It was further shown that tinnitus varies with temperature in certain countries. The results presented show that season and country of origin appear to be valuable features when combined with longitudinal mHealth data at the level of daily assessment.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 816-819, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891415

RESUMO

Tinnitus is attributed by the perception of a sound without any physical source causing the symptom. Symptom profiles of tinnitus patients are characterized by a large heterogeneity, which is a major obstacle in developing general treatments for this chronic disorder. As tinnitus patients often report severe constraints in their daily life, the lack of general treatments constitutes such a challenge that patients crave for any kind of promising method to cope with their tinnitus, even if it is not based on evidence. Another drawback constitutes the lack of objective measurements to determine the individual symptoms of patients. Many data sources are therefore investigated to learn more about the heterogeneity of tinnitus patients in order to develop methods to measure the individual situation of patients more objectively. As research assumes that tinnitus is caused by processes in the brain, electroencephalography (EEG) data are heavily investigated by researchers. Following this, we address the question whether EEG data can be used to classify tinnitus using a deep neural network. For this purpose, we analyzed 16,780 raw EEG samples from 42 subjects (divided into tinnitus patients and control group), with a duration of one second per sample. Four different procedures (with or without noise reduction and down-sampling or up-sampling) for automated preprocessing were used and compared. Subsequently, a neural network was trained to classify whether a sample refers to a tinnitus patient or the control group. We obtain a maximum accuracy in the test set of 75.6% using noise reduction and down-sampling. Our findings highlight the potential of deep learning approaches to detect EEG patterns for tinnitus patients as they are difficult to be recognized by humans.


Assuntos
Aprendizado Profundo , Zumbido , Encéfalo , Eletroencefalografia , Humanos , Som , Zumbido/diagnóstico
8.
Sci Rep ; 11(1): 18375, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526553

RESUMO

Tinnitus is an auditory phantom perception in the absence of an external sound stimulation. People with tinnitus often report severe constraints in their daily life. Interestingly, indications exist on gender differences between women and men both in the symptom profile as well as in the response to specific tinnitus treatments. In this paper, data of the TrackYourTinnitus platform (TYT) were analyzed to investigate whether the gender of users can be predicted. In general, the TYT mobile Health crowdsensing platform was developed to demystify the daily and momentary variations of tinnitus symptoms over time. The goal of the presented investigation is a better understanding of gender-related differences in the symptom profiles of users from TYT. Based on two questionnaires of TYT, four machine learning based classifiers were trained and analyzed. With respect to the provided daily answers, the gender of TYT users can be predicted with an accuracy of 81.7%. In this context, worries, difficulties in concentration, and irritability towards the family are the three most important characteristics for predicting the gender. Note that in contrast to existing studies on TYT, daily answers to the worst symptom question were firstly investigated in more detail. It was found that results of this question significantly contribute to the prediction of the gender of TYT users. Overall, our findings indicate gender-related differences in tinnitus and tinnitus-related symptoms. Based on evidence that gender impacts the development of tinnitus, the gathered insights can be considered relevant and justify further investigations in this direction.


Assuntos
Atividades Cotidianas , Telemedicina , Zumbido/epidemiologia , Algoritmos , Feminino , Humanos , Aprendizado de Máquina , Masculino , Vigilância em Saúde Pública , Qualidade de Vida , Fatores Sexuais , Inquéritos e Questionários , Telemedicina/métodos
9.
Curr Top Behav Neurosci ; 51: 175-189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840077

RESUMO

Tinnitus is a common symptom of a phantom sound perception with a considerable socioeconomic impact. Tinnitus pathophysiology is enigmatic and its significant heterogeneity reflects a wide spectrum of clinical manifestations, severity and annoyance among tinnitus sufferers. Although several interventions have been suggested, currently there is no universally accepted treatment. Moreover, there is no well-established correlation between tinnitus features or patients' characteristics and projection of treatment response. At the clinical level, this practically means that selection of treatment is not based on expected outcomes for the particular patient.The complexity of tinnitus and lack of well-adapted prognostic factors for treatment selection highlight a potential role for a decision support system (DSS). A DSS is an informative system, based on big data that aims to facilitate decision-making based on: specific rules, retrospective data reflecting results, patient profiling and predictive models. Therefore, it can use algorithms evaluating numerous parameters and indicate the weight of their contribution to the final outcome. This means that DSS can provide additional information, exceeding the typical questions of superiority of one treatment versus another, commonly addressed in literature.The development of a DSS for tinnitus treatment selection will make use of an underlying database consisting of medical, epidemiological, audiological, electrophysiological, genetic and tinnitus subtyping data. Algorithms will be developed with the use of machine learning and data mining techniques. Based on the profile features identified as prognostic these algorithms will be able to suggest whether additional examinations are needed for a robust result as well as which treatment or combination of treatments is optimal for every patient in a personalized level.In this manuscript we carefully define the conceptual basis for a tinnitus treatment selection DSS. We describe the big data set and the knowledge base on which the DSS will be based and the algorithms that will be used for prognosis and treatment selection.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Zumbido , Big Data , Humanos , Estudos Retrospectivos , Zumbido/terapia
10.
Artigo em Inglês | MEDLINE | ID: mdl-34299846

RESUMO

Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July 2020) in eight languages and attracted 7290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.


Assuntos
COVID-19 , Aplicativos Móveis , Avaliação Momentânea Ecológica , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
11.
Prog Brain Res ; 260: 441-451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33637231

RESUMO

Tinnitus is the perception of a phantom sound and the patient's reaction to it. Although much progress has been made, tinnitus remains a scientific and clinical enigma of high prevalence and high economic burden, with an estimated prevalence of 10%-20% among the adult population. The EU is funding a new collaborative project entitled "Unification of Treatments and Interventions for Tinnitus Patients" (UNITI, grant no. 848261) under its Horizon 2020 framework. The main goal of the UNITI project is to set the ground for a predictive computational model based on existing and longitudinal data attempting to address the question of which treatment or combination of treatments is optimal for a specific patient group based on certain parameters. Clinical, epidemiological, genetic and audiological data, including signals reflecting ear-brain communication, as well as patients' medical history, will be analyzed making use of existing databases. Predictive factors for different patient groups will be extracted and their prognostic relevance validated through a Randomized Clinical Trial (RCT) in which different patient groups will undergo a combination of tinnitus therapies targeting both auditory and central nervous systems. From a scientific point of view, the UNITI project can be summarized into the following research goals: (1) Analysis of existing data: Results of existing clinical studies will be analyzed to identify subgroups of patients with specific treatment responses and to identify systematic differences between the patient groups at the participating clinical centers. (2) Genetic and blood biomarker analysis: High throughput Whole Exome Sequencing (WES) will be performed in well-characterized chronic tinnitus cases, together with Proximity Extension Assays (PEA) for the identification of blood biomarkers for tinnitus. (3) RCT: A total of 500 patients will be recruited at five clinical centers across Europe comparing single treatments against combinational treatments. The four main treatments are Cognitive Behavioral Therapy (CBT), hearing aids, sound stimulation, and structured counseling. The consortium will also make use of e/m-health applications for the treatment and assessment of tinnitus. (4) Decision Support System: An innovative Decision Support System will be implemented, integrating all available parameters (epidemiological, clinical, audiometry, genetics, socioeconomic and medical history) to suggest specific examinations and the optimal intervention strategy based on the collected data. (5) Financial estimation analysis: A cost-effectiveness analysis for the respective interventions will be calculated to investigate the economic effects of the interventions based on quality-adjusted life years. In this paper, we will present the UNITI project, the scientific questions that it aims to address, the research consortium, and the organizational structure.


Assuntos
Auxiliares de Audição , Zumbido , Estimulação Acústica , Terapia Cognitivo-Comportamental , Humanos , Som , Zumbido/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA