Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(12): 3447-3461, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36120842

RESUMO

Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Animais , Humanos , Substitutos Sanguíneos/síntese química , Hemoglobinas/síntese química , Peso Molecular
2.
Vox Sang ; 117(6): 803-811, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35262216

RESUMO

BACKGROUND AND OBJECTIVES: Red blood cell (RBC) units in hypothermic storage degrade over time, commonly known as the RBC storage lesion. These older RBC units can cause adverse clinical effects when transfused, as older RBCs in the unit lyse and release cell-free haemoglobin (Hb), a potent vasodilator that can elicit vasoconstriction, systemic hypertension and oxidative tissue injury after transfusion. In this study, we examined a novel method of washing ex vivo stored single RBC units to remove accumulated cellular waste, specifically cell-free Hb, using tangential flow filtration (TFF) driven by a centrifugal pump. MATERIALS AND METHODS: The TFF RBC washing system was run under hypothermic conditions at 4°C, at a constant system volume with 0.9 wt% saline as the wash solution. The RBC washing process was conducted on 10 separate RBC units. For this proof-of-concept study, RBC units were expired at the time of washing (60-70 days old). Cell-free Hb was quantified by UV-visible absorbance spectroscopy and analysed via the Winterbourn equations. Pre- and post-wash RBC samples were analysed by Hemox Analyser, Coulter counter and Brookfield rheometer. The RBC volume fraction in solution was measured throughout the wash process by standard haematocrit (HCT) analysis. RESULTS: No substantial decrease in the HCT was observed during the TFF RBC washing process. However, there was a significant decrease in RBC concentration in the first half of the TFF RBC wash process, with no significant change in RBC concentration during the second half of the TFF cell wash process with an 87% overall cell recovery compared with the total number of cells before initiation of cell washing. Utilization of the extinction coefficients and characteristic peaks of each Hb species potentially present in solution was quantified by Winterbourn analysis on retentate and permeate samples for each diacycle to quantify Hb concentration during the washing process. Significant cell-free Hb reduction was observed within the first four diacycles with a starting cell-free Hb concentration in the RBC unit of 0.105 mM, which plateaus to a constant Hb concentration of 0.01 mM or a total extracellular Hb mass of 0.2 g in the resultant washed unit. The oxygen equilibrium curve showed a significant decrease in P50 between the initial and final RBC sample cell wash with an initial P50 of 15.6 ± 1.8 mm Hg and a final P50 of 14 ± 1.62 mm Hg. Cooperativity increased after washing from an initial Hill coefficient of 2.37 ± 0.19 compared with a final value of 2.52 ± 0.12. CONCLUSION: Overall, this study investigated the proof-of-concept use of TFF for washing single RBC units with an emphasis on the removal of cell-free Hb from the unit. Compared with traditional cell washing procedures, the designed system was able to more efficiently remove extracellular Hb but resulted in longer wash times. For a more complete investigation of the TFF RBC washing process, further work should be done to investigate the effects of RBC unit storage after washing. The designed system is lightweight and transportable with the ability to maintain sterility between uses, providing a potential option for bedside ex vivo transfusion in clinical applications.


Assuntos
Preservação de Sangue , Eritrócitos , Preservação de Sangue/métodos , Filtração , Hematócrito , Hemoglobinas/análise , Humanos , Solução Salina
3.
Nanoscale ; 15(19): 8832-8844, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37114464

RESUMO

Due to several limitations associated with blood transfusion, such as the relatively short shelf life of stored blood, low risk of developing acute immune hemolytic reactions and graft-versus-host disease, many strategies have been developed to synthesize hemoglobin-based oxygen carriers (HBOCs) as universal red blood cell (RBC) substitutes. Recently, zeolite imidazole framework-8 (ZIF-8), a metal-organic framework, has attracted considerable attention as a protective scaffold for encapsulation of hemoglobin (Hb). Despite the exceptional thermal and chemical stability of ZIF-8, the major impediments to implementing ZIF-8 for Hb encapsulation are the structural distortions associated with loading large quantities of Hb in the scaffold as the Hb molecule has a larger hydrodynamic diameter than the pore size of ZIF-8. Therefore to reduce the structural distortion caused by Hb encapsulation, we established and optimized a continuous-injection method to synthesize nanoparticle (NP) encapsulated polymerized bovine Hb (PolybHb) using ZIF-8 precursors (ZIF-8P-PolybHb NPs). The synthesis method was further modified by adding EDTA as a chelating agent, which reduced the ZIF-8P-PolybHb NP size to <300 nm. ZIF-8P-PolybHb NPs exhibited lower oxygen affinity (36.4 ± 3.2 mm Hg) compared to unmodified bovine Hb, but was similar in magnitude to unencapsulated PolybHb. The use of the chemical cross-linker glutaraldehyde to polymerize bovine Hb resulted in the low Hill coefficient of PolybHb, indicating loss of Hb's oxygen binding cooperativity, which could be a limitation when using PolybHb as an oxygen carrier for encapsulation inside the ZIF-8 matrix. ZIF-8P-PolybHb NPs exhibited slower oxygen offloading kinetics compared to unencapsulated PolybHb, demonstrating successful encapsulation of PolybHb. ZIF-8P-PolybHb NPs also exhibited favorable antioxidant properties when exposed to H2O2. Incorporation of PolybHb into the ZIF-8 scaffold resulted in reduced cytotoxicity towards human umbilical vein endothelial cells compared to unloaded ZIF-8 NPs and ZIF-8 NPs loaded with bovine Hb. We envisage that such a monodisperse and biocompatible HBOC with low oxygen affinity and antioxidant properties may broaden its use as an RBC substitute.


Assuntos
Substitutos Sanguíneos , Estruturas Metalorgânicas , Nanopartículas , Zeolitas , Humanos , Estruturas Metalorgânicas/farmacologia , Antioxidantes/farmacologia , Zeolitas/farmacologia , Células Endoteliais/metabolismo , Peróxido de Hidrogênio , Hemoglobinas/farmacologia , Hemoglobinas/química , Imidazóis , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Oxigênio/química , Eritrócitos/metabolismo
4.
Biomater Sci ; 10(24): 7004-7014, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36342429

RESUMO

Globally, age-related macular degeneration (AMD) is the third most common visual impairment. Most often attributed to cellular fatigue with aging, over expression of reactive oxygen species (ROS) causes ROS accumulation in the retina, leading to chronic inflammatory immune signaling, cellular and tissue damage, and eventual blindness. If left uncontrolled, the disease will progress from the dry form of AMD to more severe forms such as geographic atrophy or wet AMD, hallmarked by choroidal neovascularization. There is no cure for AMD and treatment options are limited. Treatment options for wet AMD require invasive ocular injections or implants, yet fail to address the disease progressing factors. To provide more complete treatment of AMD, the application of a novel anti-inflammatory heme-bound human serum albumin (heme-albumin) protein complex delivered by antioxidant ROS scavenging polydopamine (PDA) nanoparticles (NPs) for sustained treatment of AMD was investigated. Through the induction of heme oxygenase-1 (HO-1) by heme-albumin in retinal pigment epithelial (RPE) cells, anti-inflammatory protection may be provided through the generation of carbon monoxide (CO) and biliverdin during heme catabolism. Our results show that the novel protein complex has negligible cytotoxicity towards RPE cells (ARPE-19), reduces oxidative stress in both inflammatory and ROS in vitro models, and induces a statistically significant increase in HO-1 protein expression. When incorporated into PDA NPs, heme-albumin was sustainably released for up to 6 months, showing faster release at higher oxidative stress levels. Through its ability to react with ROS, heme-albumin loaded PDA NPs showed further reduction of oxidative stress with minimal cytotoxicity. Altogether, we demonstrate that heme-albumin loaded PDA NPs reduce oxidative stress in vitro and can provide sustained therapeutic delivery for AMD treatment.


Assuntos
Heme , Degeneração Macular , Humanos , Preparações de Ação Retardada , Degeneração Macular/tratamento farmacológico , Albuminas
5.
Front Med (Lausanne) ; 8: 787644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155469

RESUMO

PURPOSE: Age-related eye diseases are becoming more prevalent. A notable increase has been seen in the most common causes including glaucoma, age-related macular degeneration (AMD), and cataract. Current clinical treatments vary from tissue replacement with polymers to topical eye drops and intravitreal injections. Research and development efforts have increased using polymers for sustained release to the eye to overcome treatment challenges, showing promise in improving drug release and delivery, patient experience, and treatment compliance. Polymers provide unique properties that allow for specific engineered devices to provide improved treatment options. Recent work has shown the utilization of synthetic and biopolymer derived biomaterials in various forms, with this review containing a focus on polymers Food and Drug Administration (FDA) approved for ocular use. METHODS: This provides an overview of some prevalent synthetic polymers and biopolymers used in ocular delivery and their benefits, brief discussion of the various types and synthesis methods used, and administration techniques. Polymers approved by the FDA for different applications in the eye are listed and compared to new polymers being explored in the literature. This article summarizes research findings using polymers for ocular drug delivery from various stages: laboratory, preclinical studies, clinical trials, and currently approved. This review also focuses on some of the challenges to bringing these new innovations to the clinic, including limited selection of approved polymers. RESULTS: Polymers help improve drug delivery by increasing solubility, controlling pharmacokinetics, and extending release. Several polymer classes including synthetic, biopolymer, and combinations were discussed along with the benefits and challenges of each class. The ways both polymer synthesis and processing techniques can influence drug release in the eye were discussed. CONCLUSION: The use of biomaterials, specifically polymers, is a well-studied field for drug delivery, and polymers have been used as implants in the eye for over 75 years. Promising new ocular drug delivery systems are emerging using polymers an innovative option for treating ocular diseases because of their tunable properties. This review touches on important considerations and challenges of using polymers for sustained ocular drug delivery with the goal translating research to the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA